TECHNICAL REPORT

AND

RESOURCE ESTIMATE

ON THE

WEST RED LAKE PROJECT

Todd, Hammell Lake, and Fairlie Townships

Red Lake Mining Division, Ontario (NTS 52M/1)

> Prepared for DLV Resources Ltd.

John Kita, P.Eng. Dated: December 13, 2022 Effective Date: October 31, 2022 Signature Page of the Author Effective Date: October 31, 2022

hr

John Kita, P.Eng.

1

Dec 13 2022

Date

TABLE OF CONTENTS

1.1 Property Description and Ownership 1.2 Geology 1.3 Mineralization 1.4 Exploration 1.5 Mineralization 1.6 Conclusions 1.7 Recommendations 2.0 INTRODUCTION. 2.1 Measurements and Currency 2.2 Site Visits 2.3 Units 2.4 Sources of Information 2.5 Glossary of Terms 3.0 RELIANCE ON OTHER EXPERTS 4.0 PROPERTY DESCRIPTION AND LOCATION 4.1 Rowan Mine Property - Claims 4.2 Rowan Mine Property - Claims 4.3 Mount Jamic Mine Property - Claims 4.4 Mount Jamic Mine Property - Claims 5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE ANI PHYSIOGRAPHY 12 6.0 HISTORY 6.1 Rowan Mine Property Historic Resources 6.2 Rowan Mine Property Historic Resources 6.3 Mount Jamic Mine Property Historic Resources 7.4 Geological Setting 7.2	1.0	SUMMARY	1
2.0 INTRODUCTION	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Property Description and Ownership Geology Mineralization Exploration Mineral Resource Conclusions Recommendations	1 1 2 2 4
2.1 Measurements and Currency 2.2 Site Visits 2.3 Units 2.4 Sources of Information 2.5 Glossary of Terms 3.0 RELIANCE ON OTHER EXPERTS 4.1 Rowan Mine Property 4.2 Rowan Mine Property 4.1 Rowan Mine Property 4.2 Rowan Mine Property 4.3 Mount Jamie Mine Property 4.4 Mount Jamie Mine Property 4.5 Mount Jamie Mine Property 5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE ANI PHYSIOGRAPHY 12 HISTORY 14 Rowan Mine Property 15.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE ANI PHYSIOGRAPHY 14 Geological Setting 15 Geological Setting 16 Rowan Mine Property Historic Resources 17 Geological Setting 18 O 19.0 EXPLORATION 27 Mineralization 27 Geological Setting 20 AMOUNT Jamie Mine Project 21 Geological Set	2.0	INTRODUCTION	4
3.0 RELIANCE ON OTHER EXPERTS	2.1 2.2 2.3 2.4 2.5	Measurements and Currency Site Visits Units Sources of Information Glossary of Terms	5 6 6 6
4.0 PROPERTY DESCRIPTION AND LOCATION 9 4.1 Rowan Mine Property 10 4.2 Rowan Mine Property - Claims 10 4.3 Mount Jamie Mine Property 11 4.4 Mount Jamie Mine Property-Claims 11 5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE ANI PHYSIOGRAPHY 12 6.0 HISTORY 14 6.1 Rowan Mine Property 12 6.2 Rowan Mine Property 14 6.3 Mount Jamie Mine Property 12 6.4 Mount Jamie Mine Property Historic Resources 12 7.0 GEOLOGICAL SETTING AND MINERALIZATION 22 7.1 Geological Setting 22 7.2 Mineralization 23 9.0 EXPLORATION 34 9.0 EXPLORATION, ANALYSES AND SECURITY 40 11.1 Mt Jamie Mine Project 44 11.1.1 Golden Frontier 1940 - 1942 44 11.1.1 Golden Frontier 1940 - 1942 44 11.1.3 Bayriew Red Lake 1945 44 11.1.4 Oniero-Alfa	3.0	RELIANCE ON OTHER EXPERTS	8
4.1 Rowan Mine Property 10 4.2 Rowan Mine Property - Claims 10 4.3 Mount Jamie Mine Property 1 4.4 Mount Jamie Mine Property-Claims 11 5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE ANI PHYSIOGRAPHY 11 6.0 HISTORY 11 6.1 Rowan Mine Property 12 6.2 Rowan Mine Property Historic Resources 11 6.3 Mount Jamie Mine Property 20 6.4 Mount Jamie Mine Property Historic Resources 22 7.0 GEOLOGICAL SETTING AND MINERALIZATION 22 7.1 Geological Setting 22 7.2 Mineralization 23 8.0 DEPOSIT TYPES 33 9.0 EXPLORATION 34 11.1 Mt Jamie Mine Project 44 11.1.1 Golden Frontier 1940 - 1942 44 11.1.2 Bayview Red Lake 1944 - 1945 44 11.1.3 Byng Red Lake 1977 - 1978 44 11.1.4 Oniero-Alfa Red Lake 1982 44 11.1.5 Keeley Fronti	4.0	PROPERTY DESCRIPTION AND LOCATION	9
5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE ANI PHYSIOGRAPHY 11 11 6.0 HISTORY 12 14 6.1 Rowan Mine Property 14 14 6.2 Rowan Mine Property Historic Resources 14 14 6.2 Rowan Mine Property Historic Resources 15 Mount Jamie Mine Property Historic Resources 21 GEOLOGICAL SETTING AND MINERALIZATION 22 7.0 GEOLOGICAL SETTING AND MINERALIZATION 22 7.1 Geological Setting 22 7.1 Geological Setting 22 24 7.1 Geological Setting 23 24 7.1 Geological Setting 24 27 8.0 DEPOSIT TYPES 31 31 9.0 EXPLORATION 32 31 9.0 EXPLORATION, ANALYSES AND SECURITY 41 44 11.1 Golden Frontier 1940 - 1942 42 11.1.1 Golden Frontier 1940	4.1 4.2 4.3 4.4	Rowan Mine Property Rowan Mine Property - Claims Mount Jamie Mine Property Mount Jamie Mine Property-Claims	10 10 11 12
6.0 HISTORY 14 6.1 Rowan Mine Property 14 6.2 Rowan Mine Property Historic Resources 19 6.3 Mount Jamie Mine Property Historic Resources 20 6.4 Mount Jamie Mine Property Historic Resources 21 7.0 GEOLOGICAL SETTING AND MINERALIZATION 22 7.1 Geological Setting 20 7.2 Mineralization 22 8.0 DEPOSIT TYPES 31 9.0 EXPLORATION 32 11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY 40 11.1 Golden Frontier 1940 - 1942 44 11.1 Golden Frontier 1940 - 1942 44 11.1.3 Byng Red Lake 1977 - 1978 44 11.1.4 Oniero-Alfa Red Lake 1982 44 11.1.5 Keeley Frontier 1983 44 11.1.6 Robert Gibson 1984-1988 44	5.0	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE A PHYSIOGRAPHY	AND 13
6.1 Rowan Mine Property. 14 6.2 Rowan Mine Property Historic Resources 15 6.3 Mount Jamie Mine Property 22 6.4 Mount Jamie Mine Property Historic Resources 22 7.0 GEOLOGICAL SETTING AND MINERALIZATION 24 7.1 Geological Setting 26 7.2 Mineralization 27 8.0 DEPOSIT TYPES 31 9.0 EXPLORATION 34 10.0 DRILLING 37 11.1 Golden Frontier 1940 - 1942 44 11.1 Golden Frontier 1940 - 1942 44 11.1.2 Bayview Red Lake 1944 - 1945 44 11.1.3 Byng Red Lake 1977 - 1978 44 11.1.4 Oniero-Alfa Red Lake 1982 44 11.1.5 Keeley Frontier 1983 44 11.1.5 Keeley Frontier 1983 44 11.1.6 Robert Gibson 1984-1988 44	6.0	HISTORY	14
7.0 GEOLOGICAL SETTING AND MINERALIZATION 23 7.1 Geological Setting 26 7.2 Mineralization 27 8.0 DEPOSIT TYPES 31 9.0 EXPLORATION 34 10.0 DRILLING 37 11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY 40 11.1 Mt Jamie Mine Project 40 11.1.1 Golden Frontier 1940 - 1942 42 11.2 Bayview Red Lake 1944 - 1945 44 11.1.3 Byng Red Lake 1977 - 1978 44 11.1.4 Oniero-Alfa Red Lake 1982 44 11.1.5 Keeley Frontier 1983 44 11.1.6 Robert Gibson 1984-1988 44	6.1 6.2 6.3 6.4	Rowan Mine Property Rowan Mine Property Historic Resources Mount Jamie Mine Property Mount Jamie Mine Property Historic Resources	14 19 20 23
7.1 Geological Setting 20 7.2 Mineralization 27 8.0 DEPOSIT TYPES 31 9.0 EXPLORATION 32 10.0 DRILLING 37 11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY 40 11.1 Mt Jamie Mine Project 40 11.1.1 Golden Frontier 1940 - 1942 42 11.1.2 Bayview Red Lake 1944 - 1945 42 11.1.3 Byng Red Lake 1977 - 1978 42 11.1.4 Oniero-Alfa Red Lake 1982 42 11.1.5 Keeley Frontier 1983 44 11.1.6 Robert Gibson 1984-1988 44	7.0	GEOLOGICAL SETTING AND MINERALIZATION	25
8.0 DEPOSIT TYPES 31 9.0 EXPLORATION 32 10.0 DRILLING 37 11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY 40 11.1 Mt Jamie Mine Project 40 11.1 Golden Frontier 1940 - 1942 42 11.1.2 Bayview Red Lake 1944 - 1945 42 11.1.3 Byng Red Lake 1977 - 1978 42 11.1.4 Oniero-Alfa Red Lake 1982 43 11.1.5 Keeley Frontier 1983 43 11.1.6 Robert Gibson 1984-1988 44	7.1 7.2	Geological Setting Mineralization	26
9.0 EXPLORATION	8.0	DEPOSIT TYPES	31
10.0 DRILLING 3' 11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY 40 11.1 Mt Jamie Mine Project 40 11.1 Golden Frontier 1940 - 1942 42 11.1.2 Bayview Red Lake 1944 - 1945 42 11.1.3 Byng Red Lake 1977 - 1978 42 11.1.4 Oniero-Alfa Red Lake 1982 42 11.1.5 Keeley Frontier 1983 42 11.1.6 Robert Gibson 1984-1988 44	9.0	EXPLORATION	34
11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY 40 11.1 Mt Jamie Mine Project 40 11.1.1 Golden Frontier 1940 - 1942 42 11.1.2 Bayview Red Lake 1944 - 1945 42 11.1.3 Byng Red Lake 1977 - 1978 42 11.1.4 Oniero-Alfa Red Lake 1982 42 11.1.5 Keeley Frontier 1983 42 11.1.6 Robert Gibson 1984-1988 44	10.0	DRILLING	
11.1 Mt Jamie Mine Project 40 11.1 Golden Frontier 1940 - 1942 42 11.1.2 Bayview Red Lake 1944 - 1945 42 11.1.3 Byng Red Lake 1977 - 1978 42 11.1.4 Oniero-Alfa Red Lake 1982 43 11.1.5 Keeley Frontier 1983 43 11.1.6 Robert Gibson 1984-1988 44	11.0	SAMPLE PREPARATION, ANALYSES AND SECURITY	40
	11.1 1 1 1 1 1	Mt Jamie Mine Project 1.1.1 Golden Frontier 1940 - 1942	40 42 42 43 43 43 43

11.1.7	Jamie Frontier 1985	45
11.1.8	Jamie Frontier 1986-1987	51
11.1.9	Pezgold 1988 - 1989	
11.1.10	Zenda / Vedron 2003	
11.1.11	Hy Lake 2007 - 2012	
11.1.12	West Red Lake 2017	
11.2 Rov	van Mine Property	
11.2.1	Lake Rowan Gold Mines 1937 - 1938	75
11.2.2	Rowan Consolidated Mines 1946 - 1958	77
11.2.3	1983 – 2006	77
11.2.4	West Red Lake 2013-2018, 2021	
11.3 Ana	lytical and Security	
12.0 DATA	VERIFICATION	
12.1 Dat	a Verification Mt Jamie Mine Property	
12.1.1	Database	
12.2 Dat	a Verification Rowan Mine Project	96
12.2.1	Database	98
12.2.1 12.0 MINE		102
IS.U MINE	RAL PROCESSING AND METALLURGICAL TESTING	
14.0 MINE	RAL RESOURCE ESTIMATE	
14.1 MI	NERAL RESOURCE ESTIMATE – Mt Jamie	
14.1.1	Summary	
14.1.2	Database	
14.1.3	Domain Interpretation	
14.1.4	Block Model Geometry	
14.1.5	Cut Off Grade Estimation	
14.1.6	Bulk Density Estimation	
14.1.7	Assay Compositing	
14.1.8	Outlier Analyses	116
14.1.9	Grade Interpolation	
14.1.10	Mineral Resource Estimate Classification	
14.1.11	Block Model Resource Estimates	
14.1.12	Resource Block Model Validation	
14.1.13	Resource Block Model Sensitivity	
14.1.14	Recommendations	
14.2 MI	NERAL RESOURCE ESTIMATE – Rowan Project	
14.2.1	Summary	
14.2.2	Database	
14.2.3	Methodology	
14.2.4	Block Model Geometry	149
14.2.5	Interpretation of Mineralized Zones	149
14.2.6	Reporting Grade	
14.2.7	Rock Mineral Density	
14.2.8	Compositing	
14.2.9	High Grade Capping	
14.2.10	Grade Interpolation	
14.2.11	Resource Estimates	
14.2.12	Resource Block Model Validation	
14.2.13	Sensitivity Analysis	

	14.2.14	Recommendations	
15.0	MINE	RAL RESERVE ESTIMATES	
16.0	MINI	NG METHODS	
17.0	RECO	OVERY METHODS	
18.0	PROJ	ECT INFRASTRUCTURE	
19.0	MAR	KET STUDIES AND CONTRACTS	
20.0	ENVI IMPA	RONMENTAL STUDIES, PERMITTING, AND SOCIAL OR CT	COMMUNITY 168
21.0	CAPI	TAL AND OPERATING COSTS	
22.0	ECON	SOMIC ANALYSIS	
23.0	ADJA	CENT PROPERTIES	
24.0	OTHI	ER RELEVANT DATA AND INFORMATION	
25.0	INTE	RPRETATION AND CONCLUSIONS	
26.0	RECO	OMMENDATIONS	
26	.1 Pro	posed Budget	
27.0	REFE	RENCES	
28.0	CERT	TFICATE OF QUALIFICATIONS	
APP	ENDIX I	WEST RED LAKE PROJECT CLAIM LIST	1
APP	ENDIX I	I DIAMOND DRILL HOLE LOCATIONS	1
APP	ENDIX I	II DIAMOND DRILL HOLE SUMMARY OF RESULTS	1
<u>Illus</u>	<u>trations</u>		
Figu	re 1 Reg	ional Location Map West Red Lake Project	9

gareegrenniepressione	
Figure 2 - West Red Lake Project	
Figure 3 (dated September 30, 2022) - West Red Lake Project Claim Map. A detailed claibe found in Appendix I.	im list can 13
Figure 4 - Geology of the West Red Lake Project	
Figure 5 – Plan of the Rowan Vein System	
Figure 9-1 Plan AeroVision Total Field Mag (from Cole P. Abitibi Geophysics, 2020)	
Figure 11.1 1983 Surface Diamond Drilling Duplicates	
Figure 11.2 1985 Surface Diamond Drilling Duplicates Pulp 1	
Figure 11.3 1985 Surface Diamond Drilling Duplicates Pulp 2	
Figure 11.4 1985 Surface Diamond Drilling Screen Metallic Assay vs Average Fire Assay	
Figure 11.5 1985 Underground Diamond Drilling Duplicates	
Figure 11.6 1985 Underground Diamond Drilling Duplicates (0.0 to 100 gpt Au)	50

Figure 11.7 1985 Underground Diamond Drilling Screen Metallic Assay vs Average Fire Assay50
Figure 11.8 1986 Surface Diamond Drilling Duplicates Pulp 1
Figure 11.9 1986 Surface Diamond Drilling Duplicates Pulp 1 (< 5.0 gpt Au)53
Figure 11.10 1986-1987 Underground Diamond Drilling Duplicates54
Figure 11.12 1988 Surface Diamond Drilling Duplicates Pulp 155
Figure 11.13 1988 Surface Diamond Drilling Duplicates Pulp 1 (< 15.0 gpt Au)56
Figure 11.14 2003 Surface Diamond Drilling Duplicates
Figures 11.15 2007 Laboratory QA/QC Results
Figure 11.16 2007 Surface Drilling Assay Duplicates
Figure 11.17 2007 Surface Drilling Assay Duplicates < 10 gpt61
Figure 11.18 2011 Laboratory Blanks62
Figure 11.19 2011 Lab Standard CDN-GS-1P5C62
Figure 11.20 2011 Lab Standard CDN-GS-20A63
Figure 11.21 2011 Lab Standard CDN-GS-2E63
Figure 11.22 2011 Lab Standard CDN-GS-3H63
Figure 11.23 2011 Lab Standard CDN-GS-7B63
Figure 11.24 2011 Lab Standard CDN-GS-P263
Figure 11.25 2011 Lab Standard CDN-GS-P3A63
Figure 11.26 2011 Lab Standard CDN-GS-P7B64
Figure 11.27 2011 Lab Assay Duplicates64
Figure 11.28 2011 Lab Sample Splits64
Figure 11.29 2011 Company Blanks65
Figure 11.30 2011 Company Duplicates65
Figure 11.31 2011 Company Duplicates <0.5 gpt
Figure 11.32 2011 Company Hi Standards65
Figure 11.33 2011 Company Low Standards
Figure 11.34 2012 Laboratory Blanks67
Figure 11.35 2012 Lab Standard CDN-GS-1H67
Figure 11.36 2012 Lab Standard CDN-GS-20A
Figure 11.37 2012 Lab Standard CDN-GS-2C
Figure 11.38 2012 Lab Standard CDN-GS-2K67
Figure 11.39 2012 Lab Standard CDN-GS-8B67
Figure 11.40 2012 Lab Standard OxA89
Figure 11.41 2012 Lab Standard OxE8668
Figure 11.42 2012 Lab Standard OxF8568

Figure 11.43 2012 Lab Standard OxG84	68
Figure 11.44 2012 Lab Standard OxK79	68
Figure 11.45 2012 Lab Standard OxJ80	68
Figure 11.46 2012 Lab Duplicates	69
Figure 11.47 2012 Lab Duplicates < 1.0 GPT Au	69
Figure 11.48 2012 Lab Sample Splits	69
Figure 11.49 2012 Lab Sample Splits < 1.0 gpt Au	69
Figure 11.50 2012 Company Blanks	70
Figure 11.51 2012 Company Duplicates	70
Figure 11.52 2012 Company Duplicates <0.5 gpt Au	70
Figure 11.53 2012 Company Hi Standards	70
Figure 11.54 2012 Company Low Standards	70
Figure 11.55 2017 Lab Duplicates	73
Figure 11.56 2017 Company Blanks	74
Figure 11.57 2017 Company CDN-GS-7E	74
Figure 11.58 2017 Company CDN-GS-2K	74
Figure 11.2.1 Graph of Assay Comparison Red Crest Lab vs J.W.N Bell Lab	76
Figure 11.2.2 Graph of Assay Comparison Cochenour Lab vs X-Ray Assay Lab	78
Figures 11.2.3 2007 Laboratory QA/QC Results	80
Figure 11.2.6 2011 Laboratory Blanks	81
Figure 11.2.7 2011 Lab Standard CDN-GS-1P5C	81
Figure 11.2.8 2011 Lab Standard CDN-GS-20A	81
Figure 11.2.9 2011 Lab Standard CDN-GS-2E	81
Figure 11.2.10 2011 Lab Standard CDN-GS-3H	82
Figure 12.2.11 2011 Lab Std CDN-GS-7B	82
Figure 11.2.12 2011 Lab Std CDN-GS-P2	82
Figure 11.2.13 2011 Lab Std CDN-GS-P3A	82
Figure 11.2.14 2011 Lab Std CDN-GS-P7B	82
Figure 11.2.15 2011 Lab Assay Duplicates	82
Figure 11.2.16 2011 Lab Sample Splits	83
Figure 11.2.17 2011 Company Blanks	83
Figure 11.2.20 2011 Company Hi Standards	84
Figure 11.2.20 2011 Company Low Standards	84
Figure 12.1 Plan View Drill Holes in Database January 2021	92
Figure 12.1 Plan View of Filtered Drill Holes in Rowan Database	99

Figure 14.1.1 – Plan View of Drill Holes in Database	106
Figure 14.1.2 Plan View Defined Domains	108
Figure 14.1.3 Plan North Vein Domains	109
Figure 14.1.4 Longitudinal View North Vein Domains	109
Figure 14.1.5 Longitudinal Section Indicated Domains	110
Figure 14.1.6 Section Indicated Domains	110
Figure 14.1.7 Plan Inferred North Dipping Domains	111
Figure 14.1.8 Longitudinal Inferred North Dipping Domains	111
Figure 14.1.9 First Level Domains	112
Figure 14.1.10 Second Level Domains	112
Figure 14.1.11 Third Level Domains	113
Figure 14.1.12 Fourth Level Domains	113
Figure 14.1.13 Core Length vs True Width	116
Figure 14.1.14 Sample Au gpt vs Sample Length	117
Figure 14.1.15 Composite Au gpt vs True Width	117
Figure 14.1.16 DDH Composite Au gpt Histogram and Normal Distribution Plot	118
Figure 14.1.17 ALL DDH Composite Au gpt Probability Plot	118
Figure 14.1.18 Domain 18 ALL DDH Histogram-Cumulative Freq-Normal Distribution	119
Figure 14.1.19 Domain 18 - 0 to 50 gpt Au DDH Histogram-Cumulative Freq-Norm Dist	119
Figure 14.1.20 Domain 18 – 50 to 225 gpt Au DDH Histogram-Cumulative Freq-Norm Dist	119
Figure 14.1.21 DDH Histogram-Cumulative Freq-Normal Distribution (minus Domain 118)	120
Figure 14.1.22 Channel Composite Histogram-Cumulative Freq-Normal Distribution	121
Figures 14.1.23 Indicated Resource Domains 118 and 213	128
Figures 14.1.24 Inferred Resource Domains Shaft 1 Area-North Dipping	129
Figures 14.1.25 Inferred Resource Domains Shaft 1 Area-South Dipping	130
Figures 14.1.26 Inferred Resource Domains North Vein	133
Figure 14.1.23 – Grade Tonnage Graph	140
Figure 14.1.24 Plan View Mt Jamie Diamond Drilling	142
Figure 14.1.25 Plan View Proposed Mt Jamie Diamond Drilling	142
Figure 14.1.26 Plan View #2 Shaft Area Location Discrepency	144
Figure 14.2.1 – Plan View of Drill Holes in GEMS Database	147
Figure 14.2.2 – Plan View of Filtered Drill Holes in Rowan Database	147
Figure 14.2.2 - Section 42200E	150
Figures 14.2.5 - Histogram plots of the uncut composite values	155
Figures 14.2.6 – High Grade Trends (From Archibald 2016)	158

Figures 14.2.7 - Grade Distributions within each Zone	161
Figure 14.2.8 – Grade Tonnage Graph	166
Figure 11- Surface Plan–Diamond Drilling-showing all collar locations drilled by the RL	G (Source:
Kenneth Guy, P.Geo,. QP, Gemcom Database)	17

Table 1.5.1 We same white a Resource Summary
Table 1.5.2 Rowan Mineral Resource Summary 3
Table 1- Mount Jamie Mine Property Historic Resources (From Archibald,2016
Table 6.2- Summary Mount Jamie Mine 2016 Mineral Resources (from Archibald 2016)25
Table 11.1 Historic Summary of QAQC41
Table 12.1 Source of Original Collar Locations
Table 12.3 Anomalous Sample Lengths 96
Table 12. – Check Analysis Table
Table 12.2 Source of Original Collar Locations
Table 12.3 Summary Table of Checked Assays
Table 12.3 Anomalous Sample Lengths 103
Table 14.1.1 - Inferred Resource with sensitivity to cut-off
Table 14.1.2 - Gemcom Database tables105
Table 14.1.3 Block Model Geometry 114
Table 14.1.4 Cut Off Grade Parameters 115
Table 14.1.5 Domain 118 – DDH Statistical Summary Uncut and Cut Composite Assays
Table 14.1.6 DDH Statistical Summary Uncut and Cut Composite Assays (Minus Domain 118)121
$ \begin{array}{c} - 1 \\ - 1 $
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays122Table 14.1.8 Summary of Composite Assay Top Cuts122Table 14.1.9 - Search Ellipse Parameters123Table 14.1.10- Composite Selection123Table 14.1.11- Mineral Resource Summary124Table 14.1.12- Indicated Mineral Resource by Zone125
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays122Table 14.1.8 Summary of Composite Assay Top Cuts122Table 14.1.9 - Search Ellipse Parameters123Table 14.1.10- Composite Selection123Table 14.1.11- Mineral Resource Summary124Table 14.1.12- Indicated Mineral Resource by Zone125Tables 14.1.13- Inferred Mineral Resource by Zone125
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays122Table 14.1.8 Summary of Composite Assay Top Cuts122Table 14.1.9 - Search Ellipse Parameters123Table 14.1.10- Composite Selection123Table 14.1.11- Mineral Resource Summary124Table 14.1.12- Indicated Mineral Resource by Zone125Tables 14.1.13- Inferred Mineral Resource by Zone125Table 14.1.14- Mineral Resource Details by Zone127
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays122Table 14.1.8 Summary of Composite Assay Top Cuts122Table 14.1.9 - Search Ellipse Parameters123Table 14.1.10- Composite Selection123Table 14.1.11- Mineral Resource Summary124Table 14.1.12- Indicated Mineral Resource by Zone125Tables 14.1.13- Inferred Mineral Resource by Zone125Table 14.1.14- Mineral Resource Details by Zone127Table 14.1.15 Summary of Global and Local Grade Estimate136
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays122Table 14.1.8 Summary of Composite Assay Top Cuts122Table 14.1.9 - Search Ellipse Parameters123Table 14.1.10- Composite Selection123Table 14.1.11- Mineral Resource Summary124Table 14.1.12- Indicated Mineral Resource by Zone125Table 14.1.13- Inferred Mineral Resource by Zone125Table 14.1.14- Mineral Resource Details by Zone127Table 14.1.15 Summary of Global and Local Grade Estimate136Table 14.1.16 Summary of NN and ID2 Block Models137
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays.122Table 14.1.8 Summary of Composite Assay Top Cuts.122Table 14.1.9 - Search Ellipse Parameters123Table 14.1.10- Composite Selection123Table 14.1.11- Mineral Resource Summary124Table 14.1.12- Indicated Mineral Resource by Zone125Table 14.1.13- Inferred Mineral Resource by Zone125Table 14.1.14- Mineral Resource Details by Zone127Table 14.1.15 Summary of Global and Local Grade Estimate136Table 14.1.16 Summary of NN and ID2 Block Models137Tables 14.1.17 Sensitivity of Cut-Uncut Composites on Mineral Domains138
Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays.122Table 14.1.8 Summary of Composite Assay Top Cuts.122Table 14.1.9 - Search Ellipse Parameters123Table 14.1.10- Composite Selection123Table 14.1.11- Mineral Resource Summary124Table 14.1.12- Indicated Mineral Resource by Zone125Table 14.1.13- Inferred Mineral Resource by Zone125Table 14.1.14- Mineral Resource Details by Zone127Table 14.1.15 Summary of Global and Local Grade Estimate136Table 14.1.16 Summary of NN and ID2 Block Models137Tables 14.1.17 Sensitivity of Cut-Uncut Composites on Mineral Domains138Table 14.1.18 Gold Sensitivity to Block Grade Cut Off.139

Table 14.1.20 Drill Target Details	141
Table 14.2.1 - Inferred Resource with sensitivity to cut-off	145
Table 14.2.2 - Data Source Table	146
Table 14.2.3 - Anomalous Drill Hole Lengths	148
Table 14.2.4 - Block Model Parametres	
Table 14.2.4 Parameters Used for Cut Off Grade Estimation	152
Table 14.2.5 – Composite Length Statistics	153
Table 14.2.6 – Composite Grades (Lengths GT 8.0m)	154
Table 14.2.7 - Composite gold statistics by Zone	154
Table 14.2.8 - Composite gold statistics by Zone	155
Table 14.2.9 - Composite gold Top Cut Estimates by Zone	155
Table 14.2.9 - Search Ellipse Parameters	
Table 14.2.10 - Final Resource Estimate	160
Table 14.2.11 - Final Resource Estimate by Zone	
Table 14.2.12 Gold Sensitivity to Block Grade Cut Off	166
Table 14.2.13 Uncut – Cut Gold Sensitivity	

1.0 SUMMARY

1.1 Property Description and Ownership

The West Red Lake Project property (hereinafter referred to as the "West Red Lake Project" or the "Property") of West Red Lake Gold Mines Inc. (hereinafter referred to as "RLG") (formerly Hy Lake Gold Inc. "Hy Lake")) consists of 145 contiguous patented, leased, and staked mining claims located 16 km west northwest of the town of Red Lake, Ontario, Canada and 25 km due west of the Evolution Mining Limited ("Evolution") Red Lake Mine located in Balmertown, Ontario. The 3100 hectare Property is located in Todd, Hammell Lake, and Fairlie Townships. (Figure 1)

This Technical Report separates the Property into the Rowan Mine property and the Mount Jamie Mine property.

The 119 claim Rowan Mine property is comprised of 50 patented, 18 leased, and 49 staked claims joint ventured with Evolution pursuant to a 2007 option and joint venture agreement and 2 patented claims acquired from Claude Resources pursuant to a 2008 property option agreement. In 2010, RLG earned a 60% interest in the claims and is the manager of the joint venture. RLG currently holds a 69% interest in the joint venture. In 2009, RLG earned a 100% interest in the claims optioned from Claude Resources, which are situated within the joint venture claims and together with the joint venture claims constitute the Rowan Mine property. (Figure 2) The 26 claim Mount Jamie Mine property is contiguous to the west of the Rowan Mine property and is comprised of 9 patented, 1 leased, and 16 staked claims assembled through a series of transactions beginning in 2007 and the 26 claims are now 100% owned by the Company. (Figure 2)

All claims are registered in the name of West Red Lake Gold Mines Inc., which became a wholly owned subsidiary of DLV Resources Ltd. ("DLV").

1.2 Geology

The West Red Lake Project is situated at the west end of the Red Lake Greenstone Belt. The belt is comprised of a relatively narrow series of six metavolcanic/metasedimentary supracrustal assemblages intruded by several bodies of variable size, form, and composition. All of the assemblages have undergone several phases of deformation and metamorphism. The rocks, of Mesoarchean and Neoarchean age, form part of the larger Uchi Subprovince of the Superior Province of the Canadian Shield.

1.3 Mineralization

Property mineralization contains typical Archean lode style gold zones. The gold mineralized zones lie within a regional shear structure, the Pipestone Bay-St Paul Deformation Zone and the NT Zone, and are hosted within a sequence of hydrothermally altered mafic volcanics with intercalated felsic volcanics and porphyries as well as ultramafics. The gold mineralization is associated with quartz veining and increased iron sulphide mineralization.

1.4 Exploration

The exploration concept adopted by RLG has been to explore the 12 km section of the regional deformation zone and the 2 km section of the NT Zone situated on the Property with the purpose of identifying areas that have potential to become a mineable resource. Three historic mines are situated on the east-west trending regional deformation zone on the Property.

Gold was discovered at the Rowan Mine in 1928 and work has continued sporadically since that time. Limited surface diamond drilling over the years has resulted in the discovery of several goldbearing zones in the vicinity of the Rowan Mine shaft. Gold was discovered on the Mount Jamie Mine property in the 1920's and since that time underground development and both surface and underground diamond drilling have been carried out by a number of mining companies.

The Company's West Red Lake Project is currently at the exploration stage. RLG has conducted numerous exploration diamond drill programs on the West Red Lake Project since 2007. The majority of this exploration since 2016 was conducted on the Rowan Mine property outside of the Rowan Mine resource zones.

1.5 Mineral Resource

An updated mineral resource estimate of the Mount Jamie Mine, Pipestone Bay gold deposit and Rowan Mine Project with an effective date of October 31, 2022. The following tables summarizes the Mineral Resources. The mineral resource estimates are based on a 3D Block Model interpolated using an Inverse Distance Squared (ID2) methods to extrapolate grades. The software used for all geostatistical analysis and computation was Dassault Systemes, Geovia GEMS version 6.5.

	Toppos	Grade	Ounces
	Tonnes	Au gpt Au	Au
Indicated	35,000	15.2	17,100
Inferred	116,600	7.5	28,100

Table 1.5.1 Mt Jamie Mineral Resource Summary

Effective date of October 31, 2022 Note:

- Price of gold: \$1600 \$US
- Exchange rate US\$: CDN\$ 0.78
- Block cutoff grade: 3.8 gpt Au
- Numbers may differ due to rounding

NI 43- 101 Technical Report - West Red Lake Project

Inferred Resource			
	Tonnes	Grade g/t Au	Contained Oz Au
Total	2,790,700	9.2	827,462

 Table 1.5.2 Rowan Mineral Resource Summary

Effective date of October 31, 2022 Note:

- Price of gold: \$1600 \$US
- Exchange rate US\$: CDN\$ 0.78
- Block cutoff grade: 3.8 gpt Au
- Numbers may differ due to rounding

The mineral resources were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum (the "CIM") Standards on Mineral Resources and Reserves, Definitions and Guidelines, prepared by the CIM Standing Committee on Reserve Definitions and adopted by CIM Council on May 10, 2014.

- 1. An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.
- 2. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 3. Mineral resources which are not mineral reserves do not have demonstrated economic viability. The estimate of mineral resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.
- 4. An Inferred Mineral Resource is based on limited information and sampling gathered through appropriate sampling techniques from locations such as outcrops, trenches, pits, workings and drill holes. Inferred Mineral Resources must not be included in the economic analysis, production schedules, or estimated mine life in publicly disclosed Pre-Feasibility or Feasibility Studies, or in the Life of Mine plans and cash flow models of developed mines. Inferred Mineral Resources can only be used in economic studies as provided under NI 43-101.

5. The quantity and grade of reported inferred resources in this estimation are conceptual in nature and there has been insufficient exploration to define these inferred resources as an indicated or measured mineral resource and it is uncertain if further exploration will result in upgrading them to an indicated or measured mineral resource category.

1.6 Conclusions

Exploration work led to a focus on a portion of strike length located in the Rowan Mine area and at the NT Zone where several gold zones exhibited characteristics which appear to merit additional work.

A 1.8km portion of the strike length in the Rowan Mine area contains several gold zones which have been drilled down to a depth of approximately 300m to 350m deep.

A 1 km portion of the strike length in the NT Zone contains several gold zones which have been drilled down to a depth of approximately 200m deep.

1.7 Recommendations

Based upon the exploration completed to date the following is recommended for the West Red Lake Project:

- 1. upgrade select areas of the Rowan Mine area inferred resource to an indicated resource.
- 2. expand the Rowan mineral deposit to depth down plunge and down dip.
- 3. expand the NT Zone along strike to the northeast.

2.0 INTRODUCTION

DLV commissioned this Technical Report update to disclose additional field work completed, and to update the Mineral Resource on the West Red Lake Project since the Technical Report and Resource Estimate on the West Red Lake Project, Todd, Hammell Lake, and Fairlie Townships, Red Lake Mining Division, Ontario (NTS 52M/1) John Kita, P.Eng., John C. Archibald, B.Sc., P.Geo. and Peter Bevan, P.Eng. Effective Date: February 16, 2016 (hereinafter referred to as the "2016 Technical Report").

The Technical Report was also prepared in conjunction with the RLG's entering into an agreement with DLV dated September 15, 2022 to amalgamate with DLV by way of a three-cornered amalgamation with a wholly owned subsidiary of DLV. The amalgamation has been completed and RLG is now a wholly owned subsidiary of DLV.

In addition to updating new fieldwork results, the purpose of this Technical Report is to support the application for listing of DLV on a Canadian stock exchange including the TSX Venture Exchange ("TSXV") concurrent with completion of the Amalgamation. This Technical Report forms part of the qualifying documentation for the TSXV in connection with DLV's proposed listing on the TSXV.

DLV retained John Kita, P.Eng. to complete this updated Technical Report. The author consents to this Technical Report being part of application for listing by DLV on a Canadian stock exchange including the TSXV.

The 145 claim West Red Lake Project is comprised of the Rowan Mine property and the Mount Jamie Mine property.

The 119 claim Rowan Mine property consists of 117 claims in a joint venture managed and owned 69% by RLG and 31% owned by Evolution. The Rowan Mine property also includes 2 claims owned 100% by the Company. (Figure 2)

The Mount Jamie Mine property lies to the west of and is contiguous with the Rowan Mine property. It consists of 26 claims 100% owned by the Company. (Figure 2)

The data for this Technical Report related to the Rowan Mine property was obtained largely from the historic exploration files held by Goldcorp (predecessor to Evolution) and work conducted by RLG during the period 2007-2021.

2.1 Measurements and Currency

Much of the historical work was carried out in Imperial units. However, subsequent work has modified this convention and converted to metric. Care should be taken when reviewing such documents.

All costs are in Canadian dollars unless otherwise noted.

2.2 Site Visits

Mr John Kita, P.Eng a "qualified person" under the terms of NI-43-101 ("Qualified Person" or "QP") was most recently on the Rowan Mine Property on November 13, 2022, after the completion of the Rowan 2021 diamond drill program. The QP was previously on site February 15 to March 4 2021, November 4 to 15 2020 and in September 2016. The last activity on the Mt Jamie Mine project was diamond drilling was in 2017. There has been no material changes on the Rowan and Mt Jamie properties since the November 13 2022 site visit which is current within the definition under 43-101.

The QP did not encounter any omissions or exceptions during the visit. The exploration work conducted on the West Red Lake Project is of good quality. Company procedures, practices and QA/QC programs are of industry standard. During the recent and previous visits RLG procedures were verified for core security, logging, sampling, assaying, and QA/QC. Random drill collars, survey points and old workings locations were checked using a hand held GPS unit. Strike and dip measurements were taken of these drill collars. The data was compared to the database with no issues found.

2.3 Units

Unless otherwise stated all units used in this report are metric unless Imperial measurements are specifically noted. Au assay values are reported in grams per metric tonne ("g/t") unless some other unit such as ounces per short ton ("opt") is specifically stated.

2.4 Sources of Information

This Technical Report is based, in part, on internal Company technical reports, maps, published government reports, Company letters and memoranda, and public information as listed in the "References" Section at the conclusion of this Technical Report. Several sections from reports authored by other consultants may be directly quoted in this Technical Report, and are so indicated in the appropriate sections.

2.5 Glossary of Terms

In this document, in addition to the definitions contained heretofore and hereinafter, unless the context otherwise requires, the following terms have the meanings set forth below.

"CDN \$"	means the currency of Canada
"AA"	is an acronym for Atomic Absorption, a technique used to measure
	metal content subsequent to fire assay
"Ag"	means silver
"Au"	means gold
"Azi"	means azimuth
"CIM"	means the "Canadian Institute of Mining, Metallurgy and Petroleum"
"Company"	means West Red Lake Gold Mines Inc.
"DDH"	means diamond drill-hole
"Е"	means east
"FS"	means Feasibility Study
"ft"	means feet
"g/cm ³ "	means grams per cubic centimetre
"g/m ³ "	means grams per cubic metre
"g/t"	means grams per tonne
"gpt"	means grams per tonne
"g/t Au"	means grams of Au per tonne of rock
"ha"	means Hectare
"in"	means inches
"IP"	means Induced Polarization
"IRR"	means Internal Rate of Return
"kg"	means kilogram
"km"	means kilometre equal to 1,000 metres or approx. 0.62 statute miles
"m"	means metric metre distance measurement equivalent to approximately
	3.27 feet
"M"	means million
"Ma"	means millions of years
"MDRU"	means the Mineral Deposits Research Unit

"mi"	means miles
"Mt"	means millions of tonnes
"N"	means North
"NE"	means North-east
"NI 43-101"	means Canadian Securities Administrators National Instrument 43-101
"NW"	means North-west
"ОР"	means open pit
"oz/T"	means Troy ounces per short ton
"oz per T Au"	means Troy ounces Au per short ton
"opt"	means Troy ounces per short ton
"PEA"	means a Preliminary Economic Assessment study
"ppb"	mean parts per billion
"ppm"	means parts per million
"Property"	means the West Red Lake Project of West Red Lake Gold Mines Inc.
"S"	means south
"SE"	means south-east
"SG"	means specific gravity
"SW"	means south-west
"'t"	means metric tonne equivalent to 1,000 kilograms or approximately
	2,204.62 pounds
"T"	means Short Ton (standard measurement), equivalent to 2,000 pounds
"'t/a"	means tonnes per year
"tpd"	means tonnes per day
"US\$"	means the currency of the United States of America
"W"	means west

Conversion of:

Multiplier
0.03215
0.001
1000
34.2857
0.02853

NI 43- 101 Technical Report - West Red Lake Project

Area and Distance	Multiplier
Acres to Hectares	0.405
Feet to Metres	.3048
Miles to Kilometres	1.61
Square Miles to Hectares	259

3.0 RELIANCE ON OTHER EXPERTS

This Technical Report has been prepared by the author for DLV. DLV is filing this Technical Report with Canadian Securities Regulatory Authorities pursuant to provincial securities legislation. Except for the purposes legislated under provincial securities laws, any other use of this report by any third party is at that party's sole risk.

In the preparation of this Technical Report, the author relied upon certain information provided by the Company. The author relied on title information supplied by RLG and did not investigate mineral title, surface rights, water rights or other issues outside of their expertise.

This Technical Report gives an appraisal of the pertinent information and recommendations to carry out additional work.

The author have assumed, and relied on the fact, that all the information and existing technical documents listed in the References section of this Technical Report are accurate and complete in all material aspects. While the author carefully reviewed all the available information presented to us, he cannot guarantee its accuracy and completeness. The author reserves the right, but will not be obligated to revise this Technical Report and conclusions, if additional information becomes known to us subsequent to the date of this Technical Report.

Although copies of the tenure documents, operating licenses, permits, and work contracts were reviewed, an independent legal assessment of land title and tenure was not performed. The author has not verified the legality of any underlying agreement(s) that may exist concerning the licenses or other agreement(s) between third parties but has relied on the Company's solicitor(s) to have conducted the proper legal due diligence in this regard. Information on tenure and permits was obtained from RLG and relied upon by the author who did independently compare the information supplied with available data from public records using the Ministry of Ontario's CLAIMaps III website (for unpatented and leased claims only, patented claim information is not available).

The author is not aware of any outstanding environmental, socio-political or permitting issues and have relied on opinions provided by RLG in this regard.

A draft copy of this Technical Report has been reviewed for factual errors by RLG and the author has relied on the Company's historical and current knowledge of the Properties in this regard. Any statements and opinions expressed in this document are given in good faith and in the belief that such statements and opinions are not false and misleading at the date of this Technical Report.

4.0 PROPERTY DESCRIPTION AND LOCATION

Figure 1 Regional Location Map West Red Lake Project

The Technical Report covers the Property which is comprised of 2 contiguous properties, the Rowan Mine Property and the Mount Jamie Property, with a total area of 3100 hectares (Figure 2). The center of the Property is approximately at a grid reference of: NAD 83, Zone 15, 422,000E, 5,658,000N.

All claims include mining rights. Patented claims have surface rights. All taxes are current. See Appendix I- for claim details including expiry dates on crown claims. All claims are registered in the name of West Red Lake Gold Mines Inc., which became a wholly owned subsidiary of DLV.

Crown claims require an Exploration Permit. Patented claims do not require a permit for exploration. Present and planned exploration will be conducted solely on patented claims which include mining and surface rights and do not require exploration permits.

To the Company's knowledge there are no other significant factors and risks that may affect access, title, or the right or ability to perform work on the Property.

The Property is located in Todd, Hammell Lake, and Fairlie Townships, Red Lake Mining Division, District of Kenora (Patricia Portion), northwestern Ontario. The Red Lake area is located

250 km northeast of Winnipeg, Manitoba, 150 km north-north-west of Dryden, Ontario and 430 km northwest of Thunder Bay, Ontario. (Figure 1)

The Property is part of the historic Red Lake Gold District some 25 kilometres from the Red Lake Mine and the Campbell Mine located in the town of Balmertown, Ontario.

To the best of the Company's knowledge the West Red Lake Project is not subject to any environmental liabilities.

RLG proposed exploration work on the West Red Lake Project is situated on that portion of the Property covered by patented mining claims where RLG owns the mineral and surface rights and does not need exploration permits.

4.1 Rowan Mine Property

The Rowan Mine property is located in Todd, Hammell Lake, and Fairlie Townships, Red Lake Mining Division, District of Kenora (Patricia Portion), northwestern Ontario.

On December 5, 2007 RLG entered into an Option and Joint Venture Agreement with Goldcorp related to 117 claims that are now part of the Rowan Mine property (the "Joint Venture Agreement").

Of the 117 claims, 50 are patented claims containing mineral and surface rights, and 18 are leased and 49 staked with mineral rights only. All 117 claims are subject to a provision that should a participating interest holder's interest drop to 10% such participating interest converts to a 2% NSR.

On October 4, 2010, RLG exercised its option pursuant to the terms of the Joint Venture Agreement to a 60% ownership interest in the joint venture, as manager, having incurred exploration expenditures of \$2,500,000 over 3 years. Upon exercise of the 60% ownership interest by the Company, the parties entered into the joint venture portion of the Joint Venture Agreement with respect to the joint venture claims. RLG currently holds a 69% participating interest in the joint venture portion of the Property.

The Rowan Mine property also includes 2 patented Red Summit Mine claims in east central Todd Township that are surrounded by the Rowan Mine property and contain both mineral and surface rights.

A 100% ownership in the claims was acquired in 2009 pursuant to an option agreement with Claude Resources dated February 27, 2008 after a cash payment of \$25,000 and \$100,000 of exploration expenditures. The 2 claims are subject to a 3% NSR, of which 1% is buyable by RLG for \$500,000. The claims are not subject to any back-in rights.

4.2 Rowan Mine Property - Claims

The contiguous 119 claim Rowan Mine property is comprised of 50 patented, 18 leased claims and 49 staked claims joint ventured with Evolution and 2 patented claims acquired from Claude Resources. The Property is located in Todd, Hammell Lake, and Fairlie Townships. (Figure 3)

A complete listing of the 119 claims is provided in Appendix I.

4.3 Mount Jamie Mine Property

The Mount Jamie Mine property is situated in Todd Township, Red Lake Mining Division, District of Kenora (Patricia Portion), Northwestern Ontario.

The Mount Jamie Mine property is comprised of 26 claims which were assembled through a series of transactions of properties that are contiguous to and to the west of the Rowan Mine property. None of the claims are subject to a back-in right.

On December 12, 2005, RLG entered into an option agreement to acquire a 75% interest in 9 patented mining claims containing mineral and surface rights from Jamie Frontier Resources Inc. for \$80,000 in cash, 550,000 common shares of the Company, exploration work totaling \$1 million, and a 3% NSR.

On April 11, 2007, RLG completed the acquisition of the remaining 25% interest in the 9 patented claims from Gsont Holdings Limited for 2,000,000 common shares of the Company. RLG now has a 100% in mineral and surface rights of the 9 mining claims. Jamie Frontier Resources has a 3% NSR on the 9 claims.

On March 5, 2007, RLG entered into an option agreement with Martin Bobinski and Antony Maciejewski to earn a 100% interest in 4 staked claims and 1 leased claim containing minerals rights only that are contiguous to the east of the 9 patented claims detailed above. Total consideration for these claims consisted of cash payments of \$70,000, the issuance of 200,000 common shares of RLG and a commitment to carry out exploration work totaling.

Figure 2 - West Red Lake Project

A complete claim listing is given in Appendix I.

\$140,000, or cash/shares in lieu of, over four years. In February 2012, having met all of the requirements under the option agreement, RLG exercised its option and now owns a 100% interest in the mining claims. The claims are subject to a 3% NSR (2% of which can be repurchased for \$1 million per 1%), an annual advance royalty in the amount of \$10,000 plus a onetime payment of \$500,000 due on RLG completing a bankable feasibility study.

On October 11, 2007, RLG entered into an option agreement with Martin Bobinski and Antony Maciejewski to acquire a 100% interest in 6 staked claims containing mineral rights only that are contiguous to the west with the 9 patented claims mentioned above. RLG issued 150,000 common shares as consideration and now owns a 100% interest in the claims which are subject to a 3% NSR (2% of which can be repurchased for \$1 million per 1%).

On February 20, 2008, RLG entered into an option agreement with Rubicon Minerals Corporation to earn a 100% interest in 4 staked claims containing minerals rights only that are contiguous to the south of the above listed claims. The aggregate purchase price consisted of cash payments of \$50,000 and the issuance of 75,000 common shares. RLG now holds a 100% interest in the 4 claims, which are subject to a 2% NSR (1% of which can be repurchased for 1% and RLG has a right of first refusal on the other 1%).

On November 24, 2010, RLG entered into an option agreement with Perry English on behalf of Rubicon Minerals Corporation to earn a 100% interest in 2 staked claims containing mineral rights only that are contiguous to the east of the above mentioned claims. The aggregate purchase price consisted of cash payments of \$125,000, the issuance of 100,000 common shares of RLG over a four year period to 2014. On November 24, 2014, after the payment of \$85,000 cash and 100,000 common shares, the parties amended the option agreement to change the remaining cash commitment of \$40,000 for the year ending September 30, 2015 into two payments with each consisting of \$11,000 and 250,000 common shares on December 31, 2014 and December 31, 2015, respectively. RLG now holds a 100% interest in the 2 claims which are subject to a 2% NSR (1% of which can be repurchased for \$1 million.).

4.4 Mount Jamie Mine Property-Claims

The contiguous 26 claim Mount Jamie Mine property is comprised of 9 patented, 1 leased and 16 staked claims 100% owned by RLG and acquired in a series of transactions starting in 2007. The Mount Jaime Mine property is located in Todd Township. (Figure 3)

A complete listing of the 26 claims is provided in Appendix I.

Figure 3 (dated September 30, 2022) - West Red Lake Project Claim Map. A detailed claim list can be found in Appendix I.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Property is roughly 370 metres above sea level. Its topography is mostly small rolling hills of higher outcrop ridges, the high points of which are approximately 45 metres above their surroundings. The lower areas are lakes and swamps. The southeast part of the property is covered by relatively flat sand plain, which to the east is forested by jackpines.

The Property is accessed by motor vehicle from the northeast by land by traveling north on the Nungessor Road from the population and mining center of Balmertown for 16 km, heading west onto the Pine Ridge Forest Access Road for 22 km, then south onto the Mount Jamie Mine road for roughly 27 km. This road is in good condition and is currently being used for exploration as of the time of this report.

RLG has an all-season trailer camp located at the Mount Jamie shaft location. Exploration activities by RLG have been conducted from the camp.

The southern portion of the Property can also be accessed by water from Red Lake by either traveling into Martin Bay or north up the Golden Arm of Red Lake. Alternatively, the Rowan Mine property can be accessed from a dock on the eastern shore of Pipestone Bay along the Jamie Road.

Geological mapping and sampling can usually be performed during the six warmest months of the year, while geophysical surveys can be carried out nearly year-round (with brief pauses for breakup and freeze-up). January and February can bring some extreme temperatures to the area, down to -50° C, far too cold for the outdoor use of electronic instrumentation or to efficiently conduct a diamond drilling program. These extreme cold spells can take anywhere from a few days to a few weeks to pass. Consequently, most activities can be maintained for 10 to 11 months of the year, provided good ground transport is available. Water/ice transport can be utilized about nine months of the year; however, storms on the lake can sometimes bring such transport to a complete halt.

Water is available in industrial quantities from Rowan Lake, centrally located or Red Lake in the western portion of the property.

The Rowan Mine shaft is located on a hill at about 400m elevation above sea level at GPS coordinates 5657586 N, 421624 E (NAD 27 ZONE 15). The head frame has been dismantled and capped with a concrete block. To the east of the shaft the topography quickly drops to the 370 m elevation into flat, in part swampy terrain. From this elevation the portal entrance of the adit can be accessed. The adit entrance is currently barricaded with broken muck.

The Property physiography is diverse ranging from mature mixed forest to alder swamps typical within Archean terrains.

Many of the claims on both the Rowan Mine property and the Mount Jamie Mine property have patent and/or leased surface rights.

6.0 HISTORY

Much of the information in this Section 6 was derived from the 2016 Technical Report.

6.1 Rowan Mine Property

Several companies have worked the Rowan Mine property claim group since the 1928 discovery of gold on "Discovery Hill" by the Rowan Syndicate.

From the surface trenching on Discovery Hill, the Rowan Vein System began to develop. From 1936-1939 drifting along the Rowan vein from the base of Discovery Hill led to the current adit. Later a 425-foot shaft was sunk and development occurred on 3-levels assisted by previous surface drilling and contemporaneous underground drilling. From 1945 to 1947 drilling commenced near Rowan Lake. Underground work re-commenced in 1953 with the further development of the third level to the east. In 1958 additional drilling attempted to extend the strike extension of the Rowan Vein System. Work discontinued after 1958. The original company was re-organized at least twice from 1936-1958. Development muck was stockpiled and later custom milled by Dickenson Mines Limited in the 1980's.

Goldquest Exploration Inc. (part of the Dickenson Group of Companies) examined the property from 1981 to 1988 conducting a systematic grassroots program over the existing group and a bulkmining test of the Rowan vein above the adit level. A 3-man shrinkage stopping operation mined 2,600 tons of ore. From that, 2,482 tons were milled at the Dickenson Mines Limited site retuning 610 ounces of gold (0.25 OPT Au over 2.9 feet). Based on this work Dickenson Mines Limited conducted a feasibility study on the Rowan Vein System. A mineable reserve was estimated at 34,850 tons of 0.37 opt Au over 3.3 feet. The project was considered marginally profitable at a gold price of US\$404.

Chevron in a joint venture agreement with Goldquest drilled 100 metre spaced holes over the Rowan Vein System attempting to find wider zones. Only more narrow quartz vein-type structures were found. Holes were also drilled at Martin Bay and along the Rowan Creek zone. Corporate decisions at Chevron resulted in the termination of the option and the property was returned to Goldquest Inc.

Goldquest and later Goldcorp after their amalgamation in 1994, conducted assessment drilling testing a major fold structure east of Lake Rowan in 1993 and 1997. In 2001 Goldcorp conducted fill-in drilling between Chevrons holes.

Goldcorp later completed an IP survey near Martin Bay. This was in response to reported wide zones with VMS potential.

King's Bay Gold Corporation optioned the property from Goldcorp and underwent a drilling program in 2006 to test geological and geophysical anomalies in the Rowan Mine Shaft and Porphyry Hill locations, with the best results from the northeast shaft area. In total 23 holes covering 4846m were drilled.

Detailed Chronology (from Archibald, 2016)

1928	 Gold was discovered on "Discovery Hill" (near shaft) by the Rowan-Hall Syndicate. Several narrow gold bearing quartz veins were exposed and identified as veins A-D at surface. Ownership dispute and litigation until 1934 	Discovery
1934	 Paulore Gold Mines Ltd conducted prospecting, trenching and drilled 6 holes in the Martin Bay area. A significant E/W surface shear zone was discovered. Test pits reported a 4-7 foot wide zone in sheared diorite. ODM Vol. XLIV pt 6 reported quartz veins with arsenopyrite and abundant VG. 	Paulore Gold Mines
1936	 Lake Rowan Gold Mines Ltd. Drilling of S-series holes 37-1 to 9, 17, and 18 at the "Discovery Hill "area. The locations for holes S-10 to 16 are uncertain and not plotted on any maps. In 1937 the adit was started followed by shaft sinking and development on 3- levels. Underground holes 37-19 to 37-31 (416.4m). Financial problems. Mine grid was established using the shaft as 5000E, 5000N. 	Lake Rowan Gold Mines

	- WWII results in a work disruption.	
1939	- Forest fire destroys head frame and surface installations	II
	West Ded Lake Cald Mines McKarris Ontion (West Ded Lake Zero)	
1940	- West Red Lake Gold Mines - McKenzle Option (West Red Lake Zone). Trenching, sampling, mapping and drilling of M- series holes 1-18. (927 m) Groups 2, 3 and 4 on current Rowan property.	West Red Lake
	- Rugged Red Lake Mines. Mapping, trenching and 25 drill holes (4746 metres) Scheelite found in trenches in Martin Bay area.	F
1945	- Lake Rowan (1945) Mines. Mapping, 56 surface drill holes RW-46-1 to RW- 47-56 and discovery of the Shaft Extension, Creek and 10000 zones. Mineralization was found in iron formation on Porphyry Hill. Mine grid re- established using Post # 3 of KRL 10000 as 5000E, 5000N, 5000 elevation (feet)	lugged Red
	- Rowan Consolidated Mines Limited established; site rehabilitation. From 1953, an underground program of the Rowan Vein System continues drifting to the east on level 3 to test drill intersections obtained in 1946.	Lake an M
1950	- Additional U-series underground drilling occurred while drifting.	d R ines
	Intermittent work because of financial difficulties.	owa
	- Drilled 8 surface x-ray holes due south in 1950 but locations are not certain.	n C
1952	Rugged Red Lake. From surface showings near Martin Bay reported up to 12.8% Zn, 2.48% Pb, 1.15% Cu, 0.08 opt Au, 14.3 opt Ag. Unsubstantiated. OFR 5958.	onsolidat
1958	Rowan Consolidated Mines. Resumed work. 7 drill holes RW 58 100-106 (1340.5m) to test the eastern and western extension of the Rowan main vein.	ed
1969	Cochenour Exploration Ltd. Work on the "Rugged Group" near Martin Bay. Mapping, soil geochemistry, magnetics, HLEM. Follow-up with 8 drill holes (597m) to test WSW-ENE EM conductors. Drilling intersected dominantly mafic flows with intercalated cherts, magnetite bearing iron-formation, scattered po, cpy in Holes MB 69 1-8 over claims KRL 63669, 63670. All assays trace Au except in MB 69 4 returning 0.06 opt Au in volcanics with <1% sphalerite, arsenopyrite, pyrite and chalcopyrite.	Cochenour Exp
1971	OGS mapping of Todd and Fairlie townships by R.A. Riley. Maps 2406 and 2407. Cochenour Explorations Limited. Magnetics, HLEM near Martin Bay. EM-17 conductors K, Q, and R targeted for drilling. Area may have base metal potential.	oloration
1981	Goldquest Exploration Inc. (part of the Dickenson Group of Companies) acquires a large land package around the A.W White and Campbell Red Lake mines that includes the Rowan property. Additional claim staking of Block 10B. Transport 17,817.6 tons of Rowan stockpiled material to the A.W. White mine at a cost of \$14/ton. P.J. Vamos evaluation report recommending follow-up on 1) Shaft zone, 2) Creek zone and 3) Forgotten zone?	Goldquest
1982	Goldquest – HLEM and magnetics on cut grid.	

1983	Goldquest conducts geological mapping (1:2500), radiometrics, and lithogeochemisry. Dozer stripping of DLS Carbonate, Main Vein (1:100) and Headache zones (1:100).	
1984	Winter drill program (3622.76m), 16 holes RW 84-57-66, 68-73. Dozer Stripping and sampling at Martin Bay. Bulk mining test of a quartz vein above the adit level. 2,482 tons were later milled in 1988 to recover 610 oz of gold. Mine sealed and flooded below adit level. Portion of Rowan 1946-drill core was salvaged and stored on the property.	
1985	Drill program (4539.45m). 51 holes RW 85 67, 74-91, 91A, 92-99, 107-123, 127-132 (Titley Lake unconformity test). Stripping, pumping, detailed mapping and sampling at Martin Bay completed by July.	
1986	Milling of 10,541 tons Rowan Consolidated material producing 688 oz. of gold (0.07 opt Au). It was never clear what proportion of the material was ore-grade. Forest fire in May and June over portions of the property. Strathcona Mineral Services review of the Rowan Project.	
1987	Goldquest drills 8 holes (1822.1m) RW 87 124-126, 133-137. Dickenson Mines Limited evaluation of the Rowan Prospect by Frank Godfrey. Road access to the property from the Pine Ridge Forest Access Road completed.	
1988	Report on the Rowan property for United Reef Petroleum Limited by J. Siriunas. Milling of Rowan stockpile at DML FB-MR. Net to Goldquest 562.184 oz from 2,431.75 tons with 35 tons remaining according to DML memo.	
1989	Chevron Minerals JV with Goldquest. Compilation of drills data, drilling of holes RW-89 138-144 plus 1-deepened hole RW-84-59, dozer stripping, reconnaissance mapping, and lithogeochemistry. Work tested the Rowan Vein System, Porphyry Hill and Martin Bay areas. Relogging of various drill holes including RW 58 102-106 and a photo mosaic study of the property. (Much of this work was not found in the Toronto office.) Bruce Wilson did a structural study as presumably a government report. Goldquest Project Evaluation and Development Strategy by H. H. Wober.	Chevron
1990	Additional drilling by Chevron of holes RW-90 145-151. Chevron drops options because of corporate decision to abandon mineral exploration. Mineral inventory for the Rowan Vein System was estimated by Fumerton (1990) to be 160,000 tonnes at a grade of 14 gpt Au	
1993	Goldquest assessment drilling – 3 holes RW 93 152-154. Testing the fold closure east of the Rowan shaft.	Goldquest
1994	Goldquest Explorations Inc. amalgamates with Goldcorp Inc.	6
1997	Goldcorp Inc. assessment drilling of 2 holes RW 97 155-156 (995.26m). Test fold closure. Fold closure interpreted by D.L. Sannes.	oldcor Inc.
2000	Goldcorp Inc. helicopter magnetics, EM, VLF and radiometrics.	p,

2001	Goldcorp Inc. drills 8 holes RW-01 157-164 (1974 m) to test the Martin Bay area. Follow-up of previous drilling, geophysics and surface work. Goldcorp Inc. drills the QP zone near the Rowan shaft. 4-holes RW 01 165-168 (1699m). 1738 MMI samples were taken over block 10A, B and K. New N/S grid was re-cut over these areas. Geological mapping (1:2500) over claim 1234151 (block 10M)	
2002	Goldcorp cuts a new grid near Martin Bay over the work area conducted by Cochenour Exploratons in 1969. An IP gradient survey was completed testing the areas base metal potential.	
2006	Kings Bay drilled 23 holes, RW-06-101 to 129 (4,856 m) between June to October 2006. The option was dropped. J. Archibald summarized the work performed in his report entitled, "Diamond Drilling Report on the Rowan Lake Property for Kings Bay Corporation Ltd, dated November 22, 2006.	Kings Bay

Red Summit Mine Claims

The Red Summit Mine claims are 2 patented claims surrounded by the joint venture portion of Rowan Mine property (see Figure 2).

The property is underlain by east-west striking mafic volcanics, intruded by a small stock of quartz diorite. A zone of shearing dips 60° to 70° north adjacent to the south margin of the stock, and cuts the quartz diorite/volcanic rock contact at a small angle in an east-west direction. To the east the shearing extends into the volcanic rocks whereas to the west it penetrates into the quartz diorite. This shear zone contains barren white quartz veins, auriferous banded blue-grey vein quartz (which in some instances forms the outer portion of otherwise barren white quartz veins), and barren quartz-carbonate veins. Gold is associated with coarse-grained "bronzy" pyrite which occurs in the blue quartz veins and in adjacent, shattered silicified wallrock (Horwood 1940). The largest amount of fracturing and highest gold concentrations occur where the shear zone intersects the quartz diorite/volcanic rock contact.

Mineralization is contained within a shear zone striking N45°W and dipping 63°-70°NE with possible ore shoots totalling 206 m in length on surface and 14.6 m or more at the 575-foot level.

Ore widths more average about 1.5 m Ore Minerals: gold and silver, with minor "bronzy" pyrite Gangue Minerals: blue-grey banded quartz veins, silicified wallrock

History of Ownership 1930 Rowan Discovery Syndicate.

1931 Coniagas Mines Limited (option) 1934 Red Crest Gold Mines Limited. Exploration and Development

1930: surface work
1931: eleven diamond drill holes totalling 611 m.
1934: eight diamond drill holes totalling 649 m
1935-38 five-ton mill installed; three compartment shaft to 180m levels at 45 m, 82.5 m, 127.5m
and 172.5m; 990m of lateral work; 1676 m diamond drilling from underground
1981: surface examination by Northgate.

Production

1936: The mill was operated to treat high-grade ore from surface and to test some underground vein material.

Apparently 277 oz Au and 65 oz Ag were produced from 591 tons milled (Ferguson et al, 1971).

6.2 Rowan Mine Property Historic Resources

The resources reported here are historic in nature and should not be relied upon as their accuracy has not been verified by a Qualified Person as defined by the NI 43-101 although work by qualified engineers and geologists was carried out and would qualify as accurate under previous rules/regulations. This work was done prior to the new rules and codes that have since come into existence. RLG is not treating the historic estimates as current resources as defined by NI43-101. The resource estimates were conducted prior to the introduction of NI43-101, but were carried out in accordance with established practice at that time. The historic classes used differ from current CIM classes however the estimates were conducted in a professional manner and might be comparable to the CIM indicated or measured resource classes.

This resource estimate is based on the report written by F. A. Godfrey, March 1987 entitled "Dickenson Mines Limited Evaluation of the Rowan Projects".

From the F.A Godfrey report:

Geological reserve estimate provided by Goldquest is:

49,562 tons at 0.42 (cut) ounces per ton, 3.0-foot minimum width. This resource is broken down into a "Proven and Probable" category.

Mineable reserves are:

34,850 tons at 0.37 (cut) ounces per ton at an average mining width of 3.3 feet (all assays exceeding an ounce was cut to an ounce). The uncut grade is almost double the cut grade.

The mineable reserves represent ore above the 3rd level consisting of those blocks which can be economically developed; and mined by the shrinkage stopping method using "uppers" drilling to break the ore. These vein zones include the 3-6, 3-5, 3-2 and the East extension zones.

Ore would be stockpiled on surface and custom milled at the now Red Lake Gold Mines mine (Goldcorp) mill site in Balmertown, Ontario.

The most recent ore reserve calculations were carried out by Chevron Minerals Ltd. in 1990 (Fumerton, 1990). The results of this work were summarized as follows:

"Approximately 160,000 tonnes of gold resource grading 14 g/t is estimated to exist in the vicinity of the old underground workings of the Rowan Mine. This resource occurs in multiple small shoots and has been tested to a maximum depth of 250m below surface. Further work on the property should focus on the development of new exploration targets."

These historic estimates have not been reported under the guidelines of National Instrument 43-101 and as such are order of magnitude resource figures and are not classified resources. The authors therefore discount these estimates as they would not comply with NI 43-101 rules and regulations.

The most recent mineral resource was completed in February 2016 and is included in the report and was filed on SEDAR. (Archibald, J., February 2016. Technical Report and Resource Estimate on the West Red Lake Project, for West Red Lake Gold Mines Inc.)

All mineral resources are in the inferred category.

Inferred Resource					
Total	Tonnes	Grade (grams/tonne Au)	Contained Au (oz.)		
	4,468,900	7.57	1,087,700		

Note:

- Price of gold: \$1150 \$US
- Exchange rate US\$: CDN\$ 0.77
- Block cutoff grade: 3.0 gpt Au
- Numbers may differ due to rounding

The mineral resource estimate is based on a 3D Block Model interpolated using an Inverse Distance squared (ID^2) methods to extrapolate grades. The software used for all geostatistical analysis and computation was Dassault Systemes, Geovia GEMS version 6.5.

The historic records of the actual mining, i.e.; ore hoisted to surface, is ambiguous due to poor record keeping, the many operators-most of whom did not appear to hoist ore to surface and the lack of an on-site mill.

6.3 Mount Jamie Mine Property

Most of the following is extracted from Bevan, P.A., 2010.

It is reported that the discovery of gold on the property in the area of Shaft 1 dates back to 1920. Eleven claims were patented in 1928. The completion of any substantial work on the property

would have required those claims to be filed with the Ontario Bureau of Mines, however any information regarding ownership or work history of the claims prior to 1934 has not been found.

In 1934, Frontier Red Lake Gold Mines Ltd. acquired the claims. This company completed a program of trenching on the No. 1 Vein that reportedly assayed 0.42 oz Au/ton over a width of 50 inches, for a length of 120 feet. This prompted the owners to undertake a diamond drilling program of 24 holes for a total of 6,545 feet. Based on the results of that operation, the company decided to sink a shaft on the vein. In 1936 a two-compartment shaft was completed to a depth of 244 feet. It had stations at 130 and 230 feet, with about 155 feet of drifting at the top level and 50 feet of drifting at the 230-foot level.

The above operations were halted in December of 1936. That month, A. H. Honsberger visited and examined the property. He submitted his report in January of the following year. The report details his examination of the surface geology of the vein targeted by Shaft No. 1. In it he describes a showing about 35 feet west of the vein, which consists of narrow quartz veinlets with massive sphalerite and pyrite. Honsberger examined and provided the locations for five additional showings of gold mineralization.

In 1939, Gold Frontier Mines Ltd. was incorporated and took over the property. The shaft was dewatered and underground work resumed in 1940. The shaft was later deepened to 500 feet, and increased to three compartments (this work was completed by 1942). The lateral work amounted to 2,881 feet, in addition to 630 feet of raising on 130, 230, 350 and 475 foot levels. Work was then halted in Shaft No. 1, in favour of sinking a second shaft on a vein that had been discovered in 1941 (referred to at that time as the North Vein). The No. 2 Shaft was located about 2,550 feet North West of the first shaft and went to a depth of 559 feet. Some lateral development was completed at the 100-foot elevation. In August of 1942 a government mandate terminated all work in non-productive gold mines, bringing the activity on the prospect to a halt.

In 1944, Bayview Red Lake Gold Mines Ltd. acquired the property and deepened the No. 1 Shaft to 772 feet. No lateral work was done in the deepened portion of the shaft, except for stations developed at the 625 and 750 foot elevations. At the conclusion of the development program in 1947, the No. 1 Shaft was developed as a two-compartment shaft to the 230-foot level. From that depth it was widened to three compartments all the way to the shaft bottom (772 feet). By this time, the total lateral development in the shaft amounted to 3,225 feet of drifting and crosscutting on the 130, 230, 350 and 475 foot levels. In addition to this work, the company initiated an aggressive surface diamond drilling program totalling 15,000 feet. However, they were later forced to terminate the program due to fundraising difficulties.

Red Poplar Gold Mines Ltd. acquired the property in 1951. It was reported that a third de-watering took place and the underground workings were sampled once again, but none of these results are currently available. It is believed that the property then stood idle until 1961, at which time the company reorganized as Consolidated Red Poplar Mines and considered the possibility of reopening the mine to provide feed for the mill of McKenzie Red Lake Gold Mines. The plan did not come into fruition. McKenzie managed to find additional reserves, bringing an end to the proposed undertaking.

In 1971, Consolidated Red Poplar was once again reorganized and became New Dimension Resources. In 1975, this company optioned a 75% interest in the property to Mount Jamie Mines (Quebec) Ltd. In 1976 the mine was again de-watered and rehabilitated to the 230-foot level. The company developed three stopes and hoisted 1,224 tons of material from these (Stopes B, C-1 and C-2). These stopes are shown on the longitudinal section of the Main Zone. Mount Jamie Mines also constructed an open-air gravity mill, capable of treating 100 tons per day. Remnants of this mill are still on the property. The mill was in operation in 1976, at which time 550 tons of material was treated with a recovery of 78%.

It was used again in 1980 when Mount Jamie Mines processed 420 tons remaining from the stockpile of 1976 and an additional 300 tons of low-grade material. Only the grade of the 1976 material was known (as 0.5 oz Au/ton). The concentrates of both were sent to a smelter. The weight of the concentrate shipped was 1.5 tons and it contained 175 oz of gold and 58 oz of silver. In 1981 these same operators completed the metallurgical testing of a tailings sample from the 1980 milling, in addition to surface exploration. None of the reports on the metallurgical testing (done by Lakefield Research) are available.

In 1982, Oneiro–Alfa Ltd. acquired 52.5% of the property and initiated a surface diamond drilling program consisting of 5,400 feet of drilling. Nineteen holes were drilled. Sixteen of these tested the main zone (Shaft No. 1), while three holes were completed at the site of the second shaft. At the same time, it is reported that some geological mapping was conducted around Shaft No. 1. In a document dated December 13, 1982, the geological consulting firm of Derry Michener, Booth and Wahl produced a set of compilation maps, plans and a record of that work.

In 1983, Keeley Frontier Resources Ltd. took over Oneiro-Alfa's interest in the property. The undergrounds at Shaft No. 1 were again de-watered, this time to below the 475-foot elevation, for the purpose of implementing some of the recommendations made by Derry Michener Booth and Wahl. Reportedly, the work completed consisted of underground and surface diamond drilling with overburden stripping, sampling and mapping. Mr. P. Vamos (who was working at this time on a property adjacent to the subject claims) has knowledge of the surface drilling being conducted by Keeley-Frontier.

This drilling was comprised of twenty-two holes in the vicinity of Shaft No. 1 and two holes near Shaft No. 2 that combined for a total of 8,400 feet of surface diamond drilling. According to a report by John Reddick dated December 1983, twenty-eight holes were drilled on the 130-foot level, nine holes on the 230-foot level, and finally two holes on the 475-foot level totalling 5,004 feet of drilling. Reddick mentions that the drifts had to be slashed at the drill stations. He also notes that the muck was cleared out of the stations. Though it is stated that there were no cars available to move it, there is no explanation given as to how the muck ended up plugging the entrances to the drifts on either side of the stations, or why the rails had been blasted in several locations.

The total number of veins investigated by all previous operators is three, including the vein of the second shaft that was sunk on as well.

In early 1984, Jamie Frontier Resources Inc. acquired the property, which at that time consisted of eleven patented and four staked claims. The company proceeded to enhance the surface facilities,

upgrading the kitchen/dining area and refurbishing the living quarters. They also constructed a washhouse, and by installing proper facilities (a septic tank/field and sewer system), they brought the camp up to accepted standards of the time.

To complete the refurbishing of the plant, the company installed diesel operated power generators and backup and constructed an assaying facility on the site. The aim was to further explore and expand the resource serviceable by Shaft No. 1, and to develop the underground for mining. This was to involve a complete overhaul of the mill. The latter was partially completed by winterizing the mill and replacing some of the equipment, while upgrading other facilities. Due to funding difficulties, this work was not completed.

De-watering and refurbishing of the shaft was completed during the winter of 1985. Rehabilitation of the levels was severely delayed for a number of reasons. The condition of the stations, where development muck had been left at the entrances, was terrible. Additionally, 5,000 feet of new rails had to be laid as the old tracks had been blasted in several locations. Furthermore, serious discrepancies in the underground surveying of the mine workings and drill hole locations were discovered and corrected at this time.

6.4 Mount Jamie Mine Property Historic Resources

The resources reported here are historic in nature and should not be relied upon as their accuracy has not been verified by a Qualified Person as defined by the NI 43-101 although work by qualified engineers and geologists was carried out and would qualify as accurate under previous rules/regulations. This work was done prior to the new rules and codes that have since come into existence. RLG is not treating the historic estimates as current resources as defined by NI43-101. The resource estimates were conducted prior to the introduction of NI43-101, but were carried out in accordance with established practice at that time. The historic classes used differ from current CIM classes however the estimates were conducted in a professional manner and might be comparable to the CIM indicated or measured resource classes.

The Mount Jamie Mine property has seen a variety of underground operators, mostly for a short time interval. Therefore, the property has seen various resource assessments based on the underground sampling. Very little actual mining has taken place, the work has been mostly assessment in nature. The following table lists the various resources that were determined by the underground operators.

			Grade		
Author	Year	Tons	(Oz.	Based on	
			Au/ton)		
A.H. Honsberger	1941	50,000	0.5	Channel sampling U/G + DDH	
P.O. Broadhurst	1979	40,000	0.5	Underground sampling + DDH	
G.R. Clark	1981	40,000	0.5	Proven + Probable – largely U/G sampling and DDH	
		40,000	0.3	Possible	
D.E. Smith	1984	19,000	0.415 (x 80% rec.)	Recoverable gold content U/G	
J.B. Gordon	1988	44,535	0.437	U/G sampling, DDH No. 1 shaft only	
P.J. Vamos	1988	44,535	0.437	As above – No. 1 shaft	
P.J. Vamos	1988	16,928	0.355	Sur. and U/G sampling, DDH No.2 shaft and North Zone	

 Table 1- Mount Jamie Mine Property Historic Resources (From Archibald,2016)

The historic estimates have not been reported under the guidelines of National Instrument 43-101 and as such are order of magnitude resource figures and are not classified resources. The author therefore discounts these estimates as they would not comply with NI 43-101 rules and regulations.

The most recent resource estimate was completed in 2010 by P. Bevan (Bevan, P.A., 2010). The resource estimate used available data up to and including the 2003 drill program by Zenda. But did not include data from the 2007 Hy Lake Drill Program.

The following parameters were used for this estimate of resources for the Pipestone Deposit:

- A cutoff grade of 0.10 oz Au/ton, although two blocks lower than this figure were included for continuity.
- On cross-sections and longitudinal sections, grade intersections were assumed to go halfway to adjacent holes;
- No minimum width has been incorporated in the estimates (lowest width used was 1.39 feet generally higher and close to 4 feet). If and when reserves are to be estimated, a minimum width of 4 feet is recommended.

Anomalous high gold values have been arbitrarily cut as follows:

- Assays between 1 and 5 oz. Au/ton are cut to 1 ounce
- Assays between 5 and 10 oz. Au/ton are cut to 2 ounces
- Assays between 10 and 15 oz. Au/ton are cut to 3 ounces
- Assays between 15 and 20 oz. Au/ton are cut to 4 ounces
- Assays of 20 oz. Au/ton and above are cut to 5 ounces (Mr. Bruce Gordon, July 1988 report)
- Measured resources are based on surface sampling or underground drifts and raise samples
- Indicated resources are based on diamond drill holes spaced 60 feet apart, provided there is geological continuity
- Inferred resources are categorized as single isolated blocks or based on holes in a different zone as opposed to the majority of holes in the main section
- A tonnage factor of 12 cubic feet per ton

			(
Measured and Indicated Resources	Au gpt	Tonnes	Au gpt	Tonnes
No. 1 Shaft Area				
Measured	13.2	7,250		
Indicated	15.4	16,670		
Measured + Indicated			14.7	23,920
				·
No. 2 Shaft Area				
Indicated	9.67	3,582		
Measured + Indicated			9.67	3,582
Surface Stockpile			6.86	1,269
Total Measured and Indicated Descurres			12 72	20 771
Total Measured and Indicated Resources			15.75	28,771
Inferred Resources			Au gpt	Tonnes
No. 1 Shaft Area				
Inferred			13.60	4.100

The historic records of the actual mining, i.e.; ore hoisted to surface, is ambiguous due to poor record keeping. Between 1935 and 1942 two shafts were sunk on each of the two known veins. Shaft No. 1 reached a depth of 772 feet, with 3200 feet of lateral development and 630 feet of raising on four levels. Shaft No. 2 was sunk to a depth of 559 feet with some lateral development on the first level. A 100 ton/day mill was constructed and about 2000-3000 tons of material was mined, some of which was treated and the rest stockpiled.

Inferred

Inferred

11.79

13.13

12.72

7,817

9,072

20,989

7.0 GEOLOGICAL SETTING and MINERALIZATION

Central Area

East Boundary Zone

Total Inferred Resources

Much of the information in this Section 7 was derived from the 2016 Technical Report.

7.1 Geological Setting

The Property is part of the Red Lake Archean Greenstone Belt of the Uchi Subprovince of the Superior province. (Figure 3)

Property geology is dominated by Balmer – Ball aged mesoarchean (2940-2999 Ma) mafic-felsic metavolcanics and metasedimentary units that have been intruded by varying sizes of mafic to felsic intrusives. The Property is bound to the north by the Hammell Lake and to the south by the Killala-Baird Batholiths.

The northern and southern portions of the Property contain Confederation aged rocks forming the prospective "Balmer Unconformity". In the eastern portion of the Red Lake Greenstone Belt this interface is spatially associated with the major gold deposits of the camp.

The greenschist to amphibolite metamorphic transitional isograd has been interpreted to cross the southern quarter of the Property trending roughly WNW.

A marble and magnetite-sulphide bearing iron formation defines a regional eastward plunging anticline whose axial plane strikes 255 ° with a steep dip to the south. This unit marks the change from Balmer rocks to the east to Ball aged rocks to the west.

The roughly 105-110 ° trending Pipestone Bay-St Paul Bay Deformation Zone is interpreted to cross the center on the Property. Other notable structural features include the northeast trending Golden Arm Fault, east-west trending Rowan Lake Fault and the northeast trending Three Corners Fault.

Ultramafic units occur in at least in 3 areas on the Property and are often associated with mineralized dilatent zones. This is certainly true at the Campbell Mine and Red Lake Mine both operated by Evolution in Balmertown, Ontario.

In a report by P.H. Thompson (2003), the author summarizes results of the first phase of a project designed to produce a new, belt scale, metamorphic framework for gold exploration in the Red Lake greenstone belt.

"Metamorphism has long been recognized as a factor worth considering in the search for new gold deposits in the Red Lake belt, but comparatively little is known about the regional metamorphic framework and the potential to use metamorphic features as exploration tools. Integrated with the history of deformation, intrusion, alteration and mineralization that has transformed the Red Lake belt, the new metamorphic framework will assist in the evaluation of the relative importance of pre-, syn- and post-metamorphic gold mineralization and of the possible sources of heat and mineralized fluids. Metamorphic zones and metamorphic anomalies revealed are in themselves potential exploration targets."

Figure 4 - Geology of the West Red Lake Project

7.2 Mineralization

The roughly 105-110 ° trending Pipestone Bay-St Paul Bay Deformation Zone is interpreted to cross the center on the Property. This major deformation zone contains/hosts the 3 main gold occurrences on the Property - the historic mines Red Summit, Rowan and Mount Jamie.

Other notable structural features include the northeast trending Golden Arm Fault, east-west trending Rowan Lake Fault and the northeast trending Three Corners Fault.

In general, gold mineralization occurs as visible millimetre scale blebs in quartz veins, veinlets and stockworks. This is true for many of the occurrences on the Property. There appears to be a bias towards folded/sheared lithological contacts often involving felsic porphyries and/or iron-formations. When units of differing competencies are deformed, voids can be created at or near their contacts and gold bearing silica can later fill and seal these openings.

Since the gold mineralization process appears late, any of the extrusive geological units can be a host for gold mineralization. Although the quartz veins host the gold, gold grades within these veins are often erratic and unpredictable. The best indicator is the presence of visible gold itself

but even so the tendency for the gold to occur in nuggets can lead to misleading results from assays both positively and negatively. The wall rock adjacent to the quartz veins is generally barren.

All of the vein systems on the Property are open along strike and down dip due to the limited exploration. Most of the systems strike in a general east-west direction and are steeply dipping.

The Rowan Vein System has been the focus of the majority of exploration on the West Red Lake Project since the initial discovery of 4 sub-parallel narrow veins on surface at "Discovery Hill". Since then these veins have been drifted upon from underground on 3-levels and extensively drilled. The Rowan Vein System consists of generally east-west trending narrow, sub-vertically dipping quartz veins near the shaft and the extension of these veins toward the east. Figure 5 shows a surface plan of these veins with the best veins shown in red including 101A, 102B, 103C, and 104D veins. The eastern extension of these veins suggests a convergence and ultimate collision with the folded chemical metasedimentary unit that represents the Balmer/Ball interface.

The best gold grades often occur when course and visible native gold is present. This occurs within distinct 10 to 30 cm up to a metre of bluish to grey, glassy quartz veins/stringer zones. Rarely do these zones exceed 60 cm wide and broad zones of diffuse silicification have generally not been found. Trace to 1% pyrite and pyrrhotite is common within these veins/stringers. Less common but a better positive indicator of gold grade is the occurrence of sphalerite, galena, arsenopyrite and chalcopyrite. Generally total sulphides make up less than 2%. Metallurgical tests indicate favourable recovery characteristics. Of concern is when low and high gold grades are obtained in core recognized to contain visible gold. This "nugget effect" is a risk associated with this deposit.

The character of this gold system is best detailed in this except from the Chevron 1990 report,

"Gold mineralization in the Rowan mine is confined to a number of simple quartz veins less than 20 cm thick, which have been traced discontinuously for several hundred metres. A total of nine separate major vein systems have been recognized to date. These systems form en-echelon array trending 075 ° to 090 ° and dissipate towards the west and with depth. Towards the east, the vein system appears to terminate abruptly. Within individual veins, the potential ore occurs in shoots where the veins thicken to a maximum known width of one metre. Such shoots typically measure 1m x 25m x 150m and plunge 45 ° to the east."

At the Mount Jamie occurrence most of the descriptions of the mineralized bodies at the Main Zone and the No. 2 Shaft Zone.

The main zone strikes N60W and has a dip ranging from 45 to 85 degrees to the South (surface observation). The vein splits and branches, but in general, is confined to a width of four feet and that the vein occupies a fracture zone in altered greenstone close to and along tongues of quartz porphyry.

The North Zone is not a simple vein structure but a larger linear structure controlling a system of quartz veins and lenses. It extends between the area of the No. 2 Shaft and the southeast, and also through the gold occurrences on the north shore of Rowan. The width of this structure is several tens of feet to hundreds of feet. The individual veins are ranging between 2 and 3 feet. The underground work by Jamie Frontier confirmed this.

The mineralogical description includes "traces of pyrite, pyrrhotite, sphalerite, chalcopyrite and galena". Visible gold was noted as rare. Certain quantitative relationships between gold and other minerals exist. A relationship was found between the enrichment in gold and the amounts of chalcopyrite, and that the same relationship was found to exist between gold and galena.

Should this be valid, this could be an important factor in designing a working hypothesis and logistics for exploration. A second very different and important type of gold mineralization was observed in the underground diamond drill core, and later by a crosscut, sub drift and several lifts on the same horizon. Characteristics of this second deposit, the North "C" vein, are as follows:

- Massive, almost homogeneous smoky quartz vein
- Very fine-grain size, almost glassy
- Vertical to steeply north
- Highly stressed, mechanically unstable rock
- Virtually no sulphides
- Very fine-grained free gold content, resulting in fairly significant assays
- Requires special sampling and assaying efforts

The North C Zone was a distinct unit en echelon, about 100 feet north of the Main Zone. Because it was so different from the usual targets, it created difficulties in drill core evaluation and showed clear evidence of being mechanically unstable rock. This duality of mineralization will have to be taken into account during the planning of activities for any upcoming exploration programs.

The Mount Jamie occurrence strikes N60W and has a dip ranging from 60 to 85 degrees to the South (surface observation). The vein splits and branches, but in general, is confined to a width of four feet and the vein occupies a fracture zone in altered volcanics close to and along tongues of quartz porphyry.

The occurrence is a gold-bearing shear zone averaging 1.2 m in width. The zone has been traced for 165 m on the 38m level, but was found to be discontinuous at deeper levels. This vein zone strikes S65 deg. E and dips 85 deg. S where exposed on surface. Six ore zones have been outlined along this vein. Three of these are located along the intermediate volcanic rock-felsic breccia contact. This zone is accessed via the No. 1 shaft and lateral workings on the 38, 69, 145 m levels.

The North Zone is not a simple vein structure but a larger linear structure controlling a system of quartz veins and lenses. It extends between the area of the No. 2 Shaft and the southeast, and also through the gold occurrences on the north shore of Rowan Lake. The width of this structure is several tens of feet to hundreds of feet. The individual veins are ranging between 2 and 3 feet. The underground work by Jamie Frontier confirmed this.

The mineralogical description gives the composition as "traces of pyrite, pyrrhotite, sphalerite, chalcopyrite and galena". Visible gold was noted as rare. Certain quantitative relationships between gold and other minerals exist. A relationship was found between the enrichment in gold and the amounts of chalcopyrite, and that the same relationship was found to exist between gold and galena.

In conclusion, the gold mineralization on the Mount Jamie Mine property is hosted by a shearcontrolled linear feature striking about 30° North of West. The mineralized zones appear to fall into two distinct groups:

- Veins and lenses of gold bearing quartz in association with a variety of sulphide minerals including pyrite, chalcopyrite, pyrrhotite, sphalerite, galena and the odd flake of native gold.
- Smoky quartz veins, massive with stress lines and random distribution of fine flakes of gold.

Figure 5 – Plan of the Rowan Vein System.

The Red Summit occurrence was described by Horwood as follows:

"The claims are underlain by Keewatin lava flows of andesitic and basaltic composition, a small stock of quartz diorite, and later fine-grained diorite dikes. The lava flows, generally termed greenstones, have been deformed and range from slightly schisted rocks to chloritic schists. A zone of fracturing and shearing with quartz veins as much as 6 feet in width was discovered and opened up in a series of surface trenches. The zone occurs along or close to a contact between a small stock of quartz diorite on the north and Keewatin greenstones on the south."

Horwood describes the veining and mineralization

"The quartz veins occur in a zone of shearing and fracturing close to or along the south side of the quartz diorite stock and dip north with the contact at angles of from 60 to 70 degrees. The strike of the zone is at a slight angle to the contact; to the east the shearing goes into the greenstones, whereas to the west it occurs on the quartz diorite or along contacts between this rock and the later fine-grained diorite.

Two types of quartz veins occur. The earlier type, which makes up the bulk of the vein quartz, is a barren, white quartz. The later type, a banded, bluish-grey quartz, which carries most of the mineralization, occurs in places along the walls of the barren veins but more often obliquely across them or as separate veins in the diorite stock. Later quartz-carbonate veins, which do not contain any gold, also occur.

Values in gold are associated with a coarse bronzy pyrite, which generally occurs in the bluishgrey quartz veins or in the shattered walls along the margins of these veins. Although some bronzy pyrite occurs scattered along the zone, the best concentration has been found in the section close to the junction of the zone and the diorite-greenstone contact. This section appears to have been more favourable for the development of open spaces for vein-filling. More fracturing took place here, and there is a greater development of the later bluish-grey type of quartz. Consequently, the possible ore shoots are in this section. Both to the northwest extending into the diorite and to the southeast extending into the greenstone, the zone is narrower and there is less quartz of both types and less bronzy pyrite.

A pale, whitish pyrite, which occurs widely disseminated through the diorite and in places in appreciable quantities in stringers in and about the sheared walls of the veins, contains very little gold.

Visible gold is rare in the veins in the underground workings and was noted in only a few places associated with a grey mineral of unknown composition."

8.0 **DEPOSIT TYPES**

Much of the information in this Section 8 was derived from the 2016 Technical Report.

The Red Lake Greenstone Belt occurs in the Uchi Subprovince which is part of the Superior Province of Archean age. Both tholeiite, komatiite and calc-alkaline volcanic rocks are present in the district. Narrow exhalite units of ferruginous sedimentary rocks and cherts are interlayered with the mafic and felsic volcanic rocks. Sedimentary rocks overlie the mafic volcanics. Late ultramafic to felsic intrusions are intrusive into the volcanic rocks. With minor exceptions, the gold deposits of the Red Lake Gold District are hosted by rocks associated with the tholeiite-komatiite volcanic sequence.

Gold mineralization belongs to the structurally controlled Archean lode gold class of deposits. Structurally hosted, low-sulphide, lode gold vein systems in metamorphic terrains from around the world possess many characteristics in common, spatially and through time; they constitute a single class of mesothermal precious metal deposits, formed during accretionary tectonics or continental delamination.

The Superior Province is the largest exposed Archean Craton in the world, and has accounted for more gold production than any other Archean Craton, with the 25 largest known deposits having produced more than 1 million ounces (30 tonnes) of gold.

The majority of lode gold deposits formed proximal to regional terrane-boundary structures that acted as vertically extensive hydrothermal plumbing systems. Major mining camps are sited near deflections, strike slip or dilational jogs on the major structures. In detail, most deposits are situated in second or third order splays, or fault intersections, that define domains of low mean stress and correspondingly high fluid fluxes. Accordingly, the mineralization and associated alteration is most intense in these flanking domains. The largest lode gold mining camps are in terrains that possess greenschist facies hydrothermal alteration assemblages developed in cyclic ductile to brittle deformation. Smaller deposits are present in amphibolite to granulite facies terranes characterized by amphibolite to granulite facies alteration assemblages, ductile shear zones, and ductilely deformed veins (McCuaig and Kerrich, 1998).

Characteristically the largest gold deposits of the district are spatially associated with, but not in, porphyries similar to those exposed at the Dome mine. This association has led to considerable speculation regarding the genetic relationship of felsic porphyry emplacement to ore formation.

At a greenstone-belt scale, Archean gold camps are most commonly related to large-scale (>100 km long), transcrustal fault zones. However, on a camp scale, most of the world-class (>100 t) gold deposits are hosted in second- and third-order fault zones, whereas the first-order transcrustal faults are largely barren. There are many examples of transcrustal faults that are believed to penetrate into the lower crust or even into the mantle. Both the close spatial relationship of world-class gold deposits and trans crustal fault zones, and the deep penetration of the latter, stimulated the model that transcrustal fault zones represent the main conduits for gold-bearing hydrothermal fluids from mantle and lower-crustal levels to make their way into dilatant second- and third-order shear zones that host ore bodies in the upper crust (Kerrich, 1993).

This model requires that the trans-crustal fault zones and the gold-hosting second- and third-order shear zones were structurally and hydraulically connected at the time of gold mineralization. However, because most Archean trans-crustal fault zones worldwide are poorly exposed, and their location, strike, and orientation are typically interpreted from aeromagnetic data, there is a general lack of precise structural and fluid chemistry data.

Several major NW to NE trending zones of ductile deformation have been recognized in the Red Lake area. The present and past producing gold mines are located within these deformation zones.

To year end 2007, production for the Red Lake camp totaled more than 24 million ounces of gold, mainly from the presently producing Campbell and Red Lake and past producing Madsen mines.

Mineralization at the Campbell and Red Lake mines takes the form of auriferous, sulphide-bearing quartz-carbonate veins hosted by mafic to ultramafic volcanic rocks.

Other mineralization styles in the Red Lake Gold District include auriferous quartz veins hosted by iron formation (i.e. McFinley deposits), sulphide-rich quartz lenses, veins and stringers in a porphyry dyke (i.e. Hasaga mine) and siliceous shears within granitic stocks (i.e. McKenzie mine).

In a report by P.H. Thompson (2003), the author summarizes results of the first phase of a project designed to produce a new, belt scale, metamorphic framework for gold exploration in the Red Lake Greenstone Belt.

"Metamorphism has long been recognized as a factor worth considering in the search for new gold deposits in the Red Lake belt, but comparatively little is known about the regional metamorphic framework and the potential to use metamorphic features as exploration tools. Integrated with the history of deformation, intrusion, alteration and mineralization that has transformed the Red Lake belt, the new metamorphic framework will assist in the evaluation of the relative importance of pre-, syn- and post-metamorphic gold mineralization and of the possible sources of heat and mineralizing fluids. Metamorphic zones and metamorphic anomalies revealed are in themselves potential exploration targets."

Two metamorphic zone boundaries and three types of metamorphic anomaly are prospective for gold. Mapped for the first time in the Red Lake area, the biotite isograd as defined in quartzo-feldspathic rocks is close to more than half of the current and past gold mines. A similar spatial relation occurs in the Kalgoorlie region of Western Australia. Linked to gold mineralization at Campbell-Red Lake by previous workers, the location of the transition from greenstone to amphibolite zones has been modified, thereby outlining new areas of interest. In spite of the wide variation in the density of data constraining metamorphic zone boundaries across the map area, there is no doubt that three kinds of metamorphic anomaly are evident. There are isolated occurrences of relatively high metamorphic grade rocks in low grade zones and low metamorphic grade rocks in high grade zones and, in some areas, the metamorphic zones narrow dramatically. The apparent spatial relation between previous gold producers and the "hot spot" near Cochenour suggests that the other high grade anomalies should be evaluated for their gold potential. Low grade anomalies are prospective for both intrusive- and deformation zone-related gold deposits. High geothermal gradients evident from closely-spaced zone boundaries can be indicators of high rates of heat and fluid flow and may be conductive to gold mineralization.

Metamorphism and Gold Exploration

Two zone boundaries and the metamorphic anomalies that occur within zones outlined on the new metamorphic map of the Red Lake greenstone belt are prospective for gold. Sample density controlling the location of zone boundaries and the shape and size of metamorphic anomalies, varies considerably across the map area. More sampling and further petrography is required to verify and refine the following observations and comments.

Lower/Upper Greenstone Zone Boundary (Biotite Isograd)

Regional petrographic work in Eastern Goldfields, Western Australia and in the Timmins area, Abitibi greenstone belt, indicates that major gold mines occur on or near the boundary between the upper and the lower greenstone zone (upper and lower greenschist facies). In both terranes, the boundary corresponds to the biotite isograd as defined in quartzo-feldspathic rocks. The reconnaissance petrographic data indicate that of 22 current and past producers in the Red Lake greenstone belt, 12 occur within 900 m of the biotite isograd, which is the boundary between the lower and upper greenstone zones. In the absence of knowledge of the dip of the metamorphic zone boundary, true distance is not known. Of these, the two most productive mines, Campbell and Red Lake are less than 200 m from the isograd. Improving the constraints on the biotite isograd is a priority for future work. This first attempt to map the feature, however, does indicate that the biotite isograd is a valid exploration target in the Red Lake Greenstone Belt.

Transition Zone (Greenschist/Amphibolite Facies Boundary)

The boundary between the greenschist and amphibolite facies occurs in the upper part of the transition zone as defined in metamorphosed basal/gabbro. Four of the past and current producers in the Red Lake greenstone belt occur in or within 200 m of the transition zone as defined in metabasites. The Madsen No. 1 and Red Summit mines occur in lower amphibolite zone rocks close to the boundary with the transition zone. The Red Lake Mine is located on the low-grade side of the lower boundary zone. The Madsen ore zones 1 to 8 occur in the transition zone. In the Yellowknife Greenstone Belt (Slave Province, northwestern Canadian Shield), the Con-Giant gold deposits straddles the lower boundary of the transition zone. In the Eastern Goldfields of Western Australia, several important gold mines are located near a blue-green hornblende isograd that is analogous to the lower grade part of the transition zone in the Red Lake greenstone belt. Once again, keeping in mind the variable quality of control on the location of the transition zone, there is enough evidence from this study to support the idea that this metamorphic zone is prospective for gold. Of particular interest is the new evidence that east of Madsen the boundary between the greenschist and amphibolite facies which falls in the upper part of the transition zone does not trend to the southeast as indicated by Andrews et al. (1986). Rather, the isograd continues northeast and north of Madsen before bending to the northwest about 2000 m southeast of the Red Lake Mine. This new segment of the transition zone is prospective for gold.

Given that major structural zones like the "mine trend" that links Campbell to Cochenour are prospective for gold, the intersections of deformation zones with either the transition zone or the boundary between the lower and upper greenstone zones (biotite isograd) also merit further attention.

9.0 EXPLORATION

During 2020 Abitibi Geophysics Inc carried out a 100 line kilometer AeroVision drone magnetometer program on behalf of RLG. The survey was conducted over an area covering the 2km long northeast striking NT Zone from the south property boundary to where the NT Zone folds to the west and proximal with the Pipestone Bay-St Paul Deformation Zone regional geological structure (the "PBS Zone") which hosts the Rowan Mine gold zones. The drone magnetometer program covered 4.52 square kilometers and consisted of 68 lines spaced 50m apart with readings recorded at 1.2 m intervals along each line. This represents a significant increase in resolution over the previous survey conducted over the property. The previous survey was conducted in 2000 by Sial Geosciences Inc. for Goldcorp Inc. The Sial survey was conducted on 100 m spaced lines with readings taken at 3.5m intervals.

Figure 9-1 Plan AeroVision Total Field Mag (from Cole P. Abitibi Geophysics, 2020)

"The interpretation of the AeroVision data, and their integration with the known geology of the Rowan Lake JV property, has provided a detailed structural map of the study grid. Analysis of the total magnetic intensity, its RTP residual anomaly, and normalized derivatives (vertical gradient and tilt angle) show that the geology of the study area could be improved.

Thus, the geology of the study area should be revisited and corrected based on the delineated magnetic signatures. Among the geological units to be reviewed are the chemical sediments (chert-iron formation) and the ultramafic intrusive rocks.

A target area (gold trend) and two others favourable zones that could host gold mineralization were proposed in this study based on the combined mvi magnetic susceptibility and CET grid analysis method." Madjid Cheman P.Geo OGQ# 1259 Senior Geophysicist Abitibi Geophysics Inc.

During 2021 RLG carried out a preliminary surface channel sampling program over a 200 m strike length at the Rowan Mine area along the east-west strike to investigate the potential for a surface bulk sample. The 2021 program comprised 97 samples along discontinuous lines with approximate line separations of 5 meters, with up to seven contiguous 1m samples along each line segment, oriented perpendicular to stratigraphy. A follow up program in 2022, comprised 182 additional channel and grab samples located to test gold distribution along the veins identified in the 2021 program. The samples were sent out for assay under similar protocol as used for drill core assaying by the Company. The results of the 2021 work warranted the follow up sampling to be conducted in 2022.

The majority of the exploration work carried out by RLG on the Property has been numerous diamond drilling programs (see Section 11 - Drilling) and the preparation of National Instrument 43-101 Technical Reports. Historically, the Property has seen limited underground development and therefore historic surface and underground drilling is also available in limited detail. RLG has conducted extensive surface drilling on the Property during the period 2007 through 2021.

No current grid was cut in the area. GPS coordinates for each drill-hole collar were determined in the field using a GPS instrument. Collar locations are in UTM coordinates, Canada Mean Datum (NAD 83) Zone 15. Collar elevations, as recorded on drill logs and in the database, were used for the drill sections.

Sections of drill core to be assayed were identified by the geologist during core logging. These sections were split, using a diamond blade rock saw. Half of each sample was sealed in a plastic sample bag along with a sample identification tag. The remaining half of each sample was replaced in the core box as a permanent record. Core is stored on the Mount Jamie Mine property.

Drill holes were logged and sampled at the Mount Jamie Mine field camp. Certified gold reference standards, blanks and field duplicates were routinely inserted into the sample stream as part of RLG quality control/quality assurance program. Assaying was completed by Act Labs at their laboratory in Thunder Bay, ON. Gold analyses were performed by fire assay, however higher grade (>5 gpt Au) samples were analyzed with a gravimetric finish. A summary of diamond drill results is provided in Appendix III.

Exploration, predominately diamond drilling, has been conducted by RLG on the Property. A 12 km section of the east-west striking PBS Zone and the 2 km long NT Zone were the two main areas of the Property where diamond drilling has been undertaken. The primary exploration focus is on the Rowan Mine area which is situated near the center of the Property within the PBS Zone. A secondary exploration focus has been early-stage drilling on the PBS Zone that is outside of the Rowan Mine area. Additional diamond drilling was carried out primarily on the southern portion of the NT Zone which is associated with the north-east trending Golden Arm Structure which crosses onto the West Red Lake Project from the neighboring property located adjacent and to the south.

In the Rowan Mine area, RLG carried out exploration drill programs in 2007, 2008, 2010, 2011, 2013, 2014, 2015, 2016, 2017, 2018 and 2021. On the NT Zone, RLG carried out exploration drill programs in 2010, 2011, 2018, 2019, 2020, on the southern 1 km portion to a depth of 200 m, and one hole was drilled into the northeast 1 km portion of the NT Zone in 2021.

Exploration work was focused on a 1.8 km portion of strike length located in the Rowan Mine area which has been modeled for an inferred resource down to a depth of approximately 350m and on the NT Zone along the 1 km portion of strike length from the south property boundary along strike to the northeast.

General

The various mineralized zones on the West Red Lake Project property remain open both at depth and along strike with additional exploration drilling recommended.

The work was carried out by both employees of RLG and consultants. Geological consultants have included Kenneth Guy Exploration Services and Peter Vamos, P.Eng.

The quality of the data obtained has been excellent and valid and is judged to be reliable.

10.0 DRILLING

RLG completed significant surface diamond drilling on the West Red Lake Project during the period 2007 through 2021. The drilling was conducted on both the Rowan Mine property and the Mount Jamie Mine property. Diamond drilling to date by RLG from 2007 to 2021 has totaled 72,175.8m in 291 holes.

All Diamond Drill Hole Locations (with hole locations and collar details) is provided as Appendix II. A Diamond Drill Hole Summary of Results is provided in Appendix III. A Surface Plan Map showing the location of all holes drilled by RLG is presented as Figure 11 at the back of the Technical Report.

All drill holes were drilled with NQ size core. Chibougamau Drilling of Red Lake, Ontario was the contractor for most of the drilling. Collars were surveyed by a handheld GPS instrument accurate to within 2-3 m. Down hole surveys were carried out using a Reflex Early Shot instrument with readings taken every 50 m.

Core was picked up twice per day by RLG core technicians and taken to the core shack located at the Mount Jamie Mine site. Core was logged by the geologist with altered and mineralized sections marked for sampling.

No current grid was cut in the area. GPS coordinates for each drill-hole collar were determined in the field using a handheld GPS instrument. Collar locations are in UTM coordinates, Canada Mean Datum (NAD 83) Zone 15.

Sections of drill core to be assayed were identified by the geologist during core logging. These sections were split, using a diamond blade rock saw. Half of each sample was sealed in a plastic sample bag along with a sample identification tag. The remaining half of each sample was replaced in the core box as a permanent record. Core is stored on the Mount Jamie Mine property.

All drill holes were logged and sampled at the Mount Jamie Mine field camp. Certified gold reference standards, blanks and field duplicates were routinely inserted into the sample stream as part of RLG quality control/quality assurance program. Assaying was done by either Act Labs or SGS at their laboratories in Red Lake. Gold analyses were performed by fire assay, however higher grade (>5 g/t Au) samples were analyzed with a gravimetric finish. Visible Gold samples, when noted, were assayed by a pulp metallic method. A summary table of drill results is in Appendix III.

Drill-hole intersection lengths are not true widths. The relationship to true widths depends upon the dip of the drill-hole and the dip of the mineralized zone. The dips of the various mineralized differ but are predominately in the range 80 degrees south to 80 degrees north.

Rowan Mine Area Exploration

RLG completed a comprehensive two-year drill program (June 2007-September 2008) covering 15 holes for 8,317m focusing mainly on the Rowan Mine area and extensions. The primary purpose of the program was to test the depth and strike extensions of veining mineralization.

Work in 2009 focused on additional infill sampling of previously drilled core and data compilation.

Work in 2010 was on resource assessment and data reorganization as well as drilling in the Rowan Mine area.

At the Rowan Mine zones, examination of the longitudinal sections for the 3-8, 3-6, 3-5, 3-2, and SXZ zones have identified the stronger gold trends and the current program focused on expanding these areas. Diamond drilling in 2010 attempted to expand the mineralization down dip and between historic drill holes RW-85-61 and RW-85-62.

In 2013, RLG conducted a drilling program consisting of 8 drill holes, 3,283m in the Rowan Mine area.

In 2014, a diamond drilling program was completed by RLG on the Rowan Mine area. Ten diamond drill holes totaling 1,416m were completed. The program was designed to test for depth and strike extensions of known mineralized zones, at the Rowan Mine area as well as other known gold mineralized zones. The holes were following up on the positive results of the 2013 drill program. Every hole intercepted multiple zones and mineralization with anomalous to high grade Au assays. The high-grade intercepts correspond to historic high grade results and are a confirmation of the continuity and extensions of the zones to depth and along strike.

In 2015, a 6 hole 1,767m drill program followed by an 8 hole 2,365m program during 2016 explored the regional geological structure extending east from the Rowan Mine area along strike for a distance of 1km to where the PBS Zone intersects with the northeast trending NT Zone.

In 2016, an 8 hole 2,311m program was drilled with 6 holes testing the down dip extension of the Rowan Mine area gold zones and two exploration holes were drilled 1km east of the Rowan Mine area where the PBS Zone intersects with the northeast trending NT Zone.

In 2017, a 9 hole 3,013.5m program was carried out with 2 holes drilled to expand gold mineralized zones to depth in the Rowan Mine Area, 4 holes drilled on the western side of the Rowan Mine Area and 3 holes drilled adjacent to the east of the Rowan Mine area.

In 2017, a 5 hole 2,402m program was carried out with 3 holes drilled in the Rowan Mine area to test geological targets and two holes drilled 1km east of the Rowan Mine area to test targets at the location where the northeast trending NT Zone intersects with the easterly extension of the PBS Zone which hosts the Rowan Mine gold zones.

In 2018, a 1,272m deep hole was drilled below the Rowan Mine area mineralization to test for depth extension of mineralization and intercepted 4.39gpt over 1.5m approximately 1,050m below surface.

In 2021, a 19 hole 3,033m program was carried out in the Rowan Mine area including 16 near surface holes drilled to test the potential for a surface bulk sample together with surface channel sampling and 3 deeper holes for infill drilling.

Most of the diamond drilling post the 2016 Technical Report was conducted outside of the mineral resource area, including extensive exploration at the NT Zone area and Mount Jamie Mine property (See Figure 6). It is the opinion of the Qualified Person that the exploration has had no material effect on the 2016 Technical Report Resource Estimate and that the 2016 Technical Report Resource Estimate remains current.

NT Zone Exploration

The NT Zone is the northeast extension of a large geological structure discovered on the Newman-Todd property south of the Rowan Mine property. The northeast trending Newman-Todd Structural Zone hosts high-grade gold zones over a two km strike to a depth of over 300 m. RLG traced this gold system for 1 km on to the Rowan Mine property where iron formations continue to the northeast, towards the Rowan Creek Zone, in close proximity to the Golden Arm ultramafic structure, a primary control for gold mineralization in the Red Lake Gold District.

Early stage exploration drilling was carried out on the southern portion of the NT Zone from the south property boundary along a 1 km strike length and towards the north-east with 5 hole 1,147m program in 2010 and a second 17 hole 3,880m program in 2011.

In late 2018, an 8 hole 1,443m drill program in the NT Zone area was carried out followed by a 12 hole 3,060 program in 2019. During 2020, a 10 hole 3,178.5m program was carried out followed by a second 10 hole 3,195m program in the area of the exploration drilling. The four drill programs were carried out on the regional scale NT Zone from the south property boundary over a 1km distance along strike to the northeast. Several near parallel gold zones trending along strike were intercepted from surface to a depth of approximately 200m.

In 2021, a 636m hole was drilled into the northeastern area of the NT Zone.

Red Summit Claims

Located east and on strike with the Rowan Mine area, and of very similar vintage geologically and historically, is the Red Summit occurrence. In the 1930's gold was described as occurring in a shear related quartz vein and a shaft was sunk to a depth of 600 feet. A short production history (1935-36) resulted in the recovery of 277 oz of gold from 591 tons milled.

RLG conducted an 8 hole, 2,259m program in 2008 and a 9 hole, 2,153m program in 2011.

Purpose of these programs was to test the depth and strike extension of the mineralized zones in the vicinity of the underground workings.

The drill program indicated the potential for high grade mineralization in the vicinity of the Red Summit underground workings. High grade mineralization was intersected on a 100m step out from the historic underground workings and indicates that the mineralized zones extend beyond the historic workings. Despite the vertical to sub-vertical nature of vein sets noted historically,

examination of the drill results suggests that mineralized envelopes containing the vein sets lie mainly within a shallow southwest plunging zone situated on a lithological contact between mafic intrusive (quartz diorite) and mafic volcanic.

Mount Jamie Mine Property Exploration Area

The Golden Tree Zones and the North Zone are on strike and to the west of the Rowan Mine property and are situated within the PBS Zone located on the Mount Jamie Mine property portion of the Property. Early stage exploration drilling focused primarily on the tracing the Golden Tree Zones and the North Zone by following the west by northwest trend of the mineralized regional structure crossing the Mount Jamie Mine property portion of the Property with the purpose of establishing mineral strike continuity from the Rowan Mine property onto and across the Mount Jamie Mine property. A 31 hole 3,489m program was carried out in 2011 and a 31 hole 5,133m program was carried out in 2012. In the Mount Jamie Mine area, a 15 hole 2,544 m program was carried out in 2017.

Gold mineralization on the Mount Jamie Mine property portion of the Property is generally hosted by thin quartz veins and veinlets associated with zones of carbonate and sericite-chlorite alteration and sulphide mineralization.

General

The various mineralized zones on the West Red Lake Project property remain open both at depth and along strike with additional exploration drilling recommended.

The work was carried out by both employees of RLG and consultants. Geological consultants have included Kenneth Guy Exploration Services and Peter Vamos, P.Eng.

Core recovery was usually in the vicinity of 100% and in the QP's opinion the were no factors in the drilling programs that could impact the validity of the results.

The quality of the data obtained has been excellent and valid and is judged to be reliable.

Results from RLG drilling were very favourable, indicating high grade gold mineralization along strike from the historic underground development. Favourable results were also obtained at the NT Zone.

11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

No current grid was cut in the area. GPS coordinates for each hole collar were determined in the field using a GPS instrument. Collar locations are in UTM coordinates, Canada Mean Datum (NAD 83) Zone 15. Collar elevations, as recorded on drill logs and in the database, were used for the drill sections.

11.1 Mt Jamie Mine Project

During the past 82 years there has been 15 major diamond drill campaigns conducted on the Mt Jamie Property. The first records are from 1940 and the most recent in 2017. The following table

summarizes the number of drill holes, total metres drilled, original units of measurements, Assay Detection limits, QAQC Programs and laboratories used.

YEAR	COMPANY	DDH Series in Database	Collar Location	# Holes	Total Metres	CORE SIZE	Original Units	QAQC	Assay Detection Limit Au gpt	Laboratory
1940	Golden Frontier	GU-1-***	Shaft 1 Underground First Level	14	81	Unknown	feet; \$ per Ton	Unknown	0.69	Unknown
		GU-2-***	SHAFT 2 Surface	3	39			-		
1941	Golden Frontier	GU-1-***	Shaft 1 Underground First Level	39	489	Unknown	feet; \$ per Ton	Unknown	0.34	Unknown
		GU-2-***	Shaft 1 Underground Second Level	38	333					
		GU-3-***	Shaft 1 Underground Third Level	16	252					
		GU-4-***	Shaft 1 Underground Forth Level	13	191					
1942	Golden Frontier	GF-***	North Vein Surface	4	102	Unknown	feet; \$ per Ton	Unknown	0.34	Unknown
		GF-1-2**	Shaft 1 Underground First Level	7	107					
		GU-2-233	Shaft 1 Underground Second Level	1	23					
		GU-4-230	Shaft 1 Underground Forth Level	1	23					
1945	Bauview Red Lake	BW/-**	Shaft 2 Surface	20	24/6	Unknown	feet: ont	Linknown	0.34	CHEMEX
1545	Bayview Red Lake	BW-	Other	9	1724	Unknown	ieet, opt	UIKIIUWII	0.34	CHEIVIEA
1977	Byng Red Lake	HL-77-01.02.03	South of Shaft 2 north of Dupont Lake	3	97					
1978	Byng Red Lake	HL-78-04,05	South of Shaft 2 north of Dupont Lake	2	35	EXT	feet	No Assays		
1982	Oneiro-Alfa	Not in Database	Shaft 1 Shaft 2	19	1646	Unknown	Unknown	Unknown	Unknown	Unknown
1983	Keeley Frontier	KF-83-**	Shaft 2 Surface	6	396	BQ	metric; opt	50% of samples Samples greater then 3.0 gpt had multiple reassays	- 0.34	Cochenour Fire Assay
		KF-83-**	Shaft 1 Surface	22	2168	BQ	metric; opt	2% of samples reassayed		
		KU-1**	Shaft 1 Underground First Level	28	1050	AQ	feet; opt			
		KU-2**	Shaft 1 Underground Second Level	8	365	AQ	feet; opt	Unknown		
		KU-40*	Shaft 1 Underground Forth Level	2	168	AQ	feet; opt			
1984	Robert Gibson	RG-84-**	South of Shaft 2 north of Dupont Lake	10	313	XRT	feet	No Assays		
1985	Jamie Frontier	JF-31 - 43	Shaft 1 Surface	13	721	BQ	feet; opt	5% of samples greater then 3 gptAu had Screened Metallics Assays; 96% of samples Samples greater then 1.0 gpt had multiple reassays 16% of samples reassayed	0.068	Swastika Lab
1985	Jamie Frontier	JU-110 - 141	Shaft 1 Underground First Level	32	1041			66% of samples greater then 1.5 gpt	ot 0.068	Cochenour Fire Assay
		JU-210 - 240	Shaft 1 Underground Second Level	31	1189	BQ		Au had Screened Metallics Assays;		
		JU-310 - 330	Shaft 1 Underground Third Level	21	1086		feet; opt	88% of samples greater then 1.5 gpt		Swastika
		JU-410 - 434	Shaft 1 Underground Fourth Level	24	1794			Au had multiple reassays 19% of samples reassayed		
1985		Not in Database	South of Shaft 2 north of Dupont Lake	2	62					
1986	Robert Gibson	RG-86-**	South of Shaft 2 north of Dupont Lake	9	288	XRT	feet			
1986	Jamie Frontier	JF-44 - 92	Shaft 2 Surface, North Vein, Other	50	2752	BQ	feet; opt	83% of samples greater then 4.5 gpt had Screened Metallics Assays; Samples greater then 1.0 gpt had 74% multiple reassays and 83% of samples > 4.5 gpt analyzed with screened metallics; 10% of total	0.068	Cochenour Fire Assay / ALS Chemex
1986	lamie Frontier	II I-142 - 149	Shaft 1 Underground First Level	8	572		feet; opt	Samples dupicated	% 0 0.068	Cochenour Fire Assay / Swastika
	Jamie Frontier	JU-241 - 246	Shaft 1 Underground Second Level	6	804	BQ		had Screened Metallics Assays: 97%		
	Jamie Frontier	JU-416,435,436	Shaft 1 Underground Fourth Level	3	715			of samples Samples greater then 3.0 gpt had multiple reassays 19% of samples reassayed		
1987	Robert Gibson	RG-87-**	South of Shaft 2 north of Dupont Lake	11	385	EXT	feet	No Assays		
1987	Jamie Frontier	JU-437,438,439	Shaft 1 Underground Fourth Level	3	524	BQ	feet; opt	7% of samples duplicated	0.069	Cochenour Fire Assay
1987	Byron Bay	BB87-1	North West of Shaft 2	1	375	BQ	feet; ppb	Unknown	0.005	Unknown
1988	Robert Gibson	RG-88-**	South of Shaft 2 north of Dupont Lake	3	113	EXT	feet	No Assays		
2003	Zenda / Vedron	JF-03-**	Shaft 2 Area and west	6	900	NQ	metric; gpt	50% of samples depicted 50% of samples greater then 10 gpt had Screened Metallics Assays; 67% of samples greater then 1.0 gpt had multiple reassays 18% of samples	0.01	ALS Chemex
2007	Hy Lake	HY-07-**	Shaft 2 Area, east west along Strike	38	7687	NQ	metric; opt/gpt	reassayed Lab Standards and Duplicates 25% of samples greater then 0.75 gpt had Screened Metallics Assays; 5% of samples reassayed	0.01/.001	SGS/ALS
2011	Hy Lake	HY-11-**	Outside of Shaft 1 Area	31	3490	NQ	metric; opt/gpt	Company and lab QA QC Program in place, 100% core sampled cupellation followed by AA (for >5 g/t Au samples rerun with gravimetric.)	0.005 / .01 gpt	Actlabs
2012	Hy Lake	HY-12-**	Property Wide	32	5212	NQ	metric; opt/gpt	Company QA QC Program in place 100% core sampled fire assay with AA finish ,for >5 g/t Au samples screened metallics or Gravimetric Finish.	.01 gpt	Actlabs
2017	West Red Lake	MJ-17-**	Shaft 1 Area and North Vein	15	1893	NQ	metric; gpt	Company QA QC Program in place, insertion of blanks and standards.	.005 gpt	SGS Labs

Table 11.1Historic Summary of QAQC

11.1.1 Golden Frontier 1940 - 1942

Golden Frontier conducted surface and underground drilling on the property between 1940 to 1942. The drilling explored the #1 Shaft, #2 Shaft and the North Vein, with the majority of the drilling done on the #1 Shaft. The assay information was recovered from the existing diamond drill logs. Distance measurements on the logs where in feet and assays recorded in dollars per ton. The assay values were converted to ounces per ton by multiplying the dollar value by 0.02853. There were no recorded duplicates listed on the logs.

The company and laboratory QAQC programs and procedures for diamond drilling and assaying are not recorded. However it appears they may have limited the sample length to obtain a representative sample. The surface drilling has an average sample length of 0.71m with a maximum length of 1.22m and a minimum length of 0.15m. The underground drilling program had an average sample length of 0.77m with a maximum length of 2.29m and a minimum length of 0.15m. All underground drilling samples grading above 3 gpt averaged 0.66m in length.

The company QAQC program and procedures for underground sampling are not recorded. Sample locations and assay results were recorded using historic plans, sections and longitudinal views.

The laboratory QAQC program is unknown. Assays may have been completed in an on site assay office or the sample may have been shipped out to an independent laboratory. Based on the assay results the fire assay with gravimetric finish had a detection limit of 0.34 gpt Au. Based on this value, trace and nil values are recorded as .001 gpt rather than using 0.17 gpt (equal to half the detection limit) which would be anomalous using current measuring technology.

Based on the lack of recorded QA QC procedures, assay certificates, the author considers the assay data from this program suitable to either limit mineralized zones or used with assay results from more recent drilling, if a zone is solely defined by these holes the zone should be inferred until confirmed with more recent results.

11.1.2 Bayview Red Lake 1944 - 1945

Bayview Red Lake conducted surface drilling on the property between 1944 to 1945. The drilling explored the #1 Shaft, #2 Shaft, North Vein and other areas, with the majority of drilling done on the #1 Shaft. The assay information was recovered from the existing diamond drill logs. Distance measurements on the logs where in feet and assays recorded in ounces per ton. There were no recorded duplicates listed on the logs.

The company QAQC program and procedures for diamond drilling are not recorded. The surface drilling has an average sample length of 1.07m with a maximum length of 8.84m and a minimum length of 0.04m. Samples grading above 3 gpt averaged 0.49m in length.

The laboratory QAQC program is unknown. Drill hole number BW-33 listed Chemex as the laboratory used for assaying the core samples. Based on the assay results, fire assay with gravimetric finish had a detection limit of 0.34 gpt Au. All trace and nil values are recorded as .001 gpt rather than using 0.17 gpt (equal to half the detection limit) which would be anomalous using current measuring technology.

Based on the lack of recorded QA QC programs, and the lack of assay certificates, the author considers the assay data from this program suitable to either limit mineralized zones or used with assay results from more recent drilling, if a zone is solely defined by these holes the zone should be inferred until confirmed with more recent results.

11.1.3 Byng Red Lake 1977 - 1978

Byng Red Lake conducted surface drilling 400 metres south of the No 1 shaft north of Dupont Lake. No drill core samples were recorded.

The claims were held by Byng Red Lake and has since been acquired by West Red Lake Gold Mines.

11.1.4 Oniero-Alfa Red Lake 1982

Oniera Alfa conducted surface drilling on the property in 1982. Nineteen drill holes totaling 1646 metres were completed. These holes are not in the database, and no records are available.

11.1.5 Keeley Frontier 1983

Keely Frontier conducted surface and underground drilling on the property in 1983. The surface drilling explored the #1 Shaft and #2 Shaft areas. Underground drilling took place at the #1 shaft area. The assay information was recovered from the existing diamond drill logs. The gold assaying was done at Cochenour Fire Assay. Based on the assay results, fire assay with gravimetric finish had a detection limit of 0.34 gpt Au. All trace and nil values are recorded as .001 gpt rather than using 0.17 gpt (equal to half the detection limit) which would be anomalous using current measuring technology.

The company QAQC program and procedures for underground sampling are not recorded. Sample locations and assay results were recorded using historic plans, sections and longitudinal views and the data transfers into the database. Historic Reports (Vamos P.J.,2003), states that the underground sampling by Keeley Frontier confirmed the earlier (1940-1942) sampling. There are no recorded comparisons or data available to support the statement.

The company and laboratory QAQC programs and procedures for the surface diamond drilling program are not recorded. Assay information was transferred from existing logs. Original measurement units on the drill logs were metric lengths and assay results reported as ounces per ton Au. Sample lengths were limited to improve the accuracy of the assay by reducing the nugget effect within the sample. The surface drilling has an average sample length of 0.29m with a maximum length of 1.30m and a minimum length of 0.15m. Duplicate assays were done through instructions of the company or as part of the laboratory QAQC and recorded on the drill logs. Two percent of all samples are duplicated, and of the original samples grading greater than 3.0 gpt Au fifty percent of these samples are duplicated. The duplicate assay results indicated no bias or reproducibility issues with the original assay results.

Figure 11.1 1983 Surface Diamond Drilling Duplicates

The company and laboratory QAQC programs and procedures for the underground diamond drilling program are not recorded. Assay information was transferred from existing logs. Original measurement units on the drill logs were imperial lengths and assay results reported as ounces per ton Au. Sample lengths were limited to improve the accuracy of the assay by reducing the nugget effect within the sample. The underground drilling has an average sample length of 0.31m with a maximum length of 0.49m and a minimum length of 0.06m.

The recorded duplicate assays from the surface diamond drilling program indicates a limited QA QC program in place for the sampling program. The lack of a recorded procedures for sample handling and QA QC program, and the absence of assay certificates limit the assay data to define inferred resources unless supported by more recent data.

Based on the lack of recorded QA QC procedures, assay certificates, the author considers the assay data from this program suitable to either limit mineralized zones or used with assay results from more recent drilling, if a zone is solely defined by these holes the zone should be inferred until confirmed with more recent results.

11.1.6 Robert Gibson 1984-1988

Robert Gibson drilled a series of surface diamond drill holes south of the #1 shaft on claims not held be the company. There are no recorded assays. The company has since acquired these claims.

11.1.7 Jamie Frontier 1985

11.1.7.1 General

Jamie Frontier conducted surface drilling, underground drilling and underground sampling on the property in 1985. The surface and underground drilling explored the #1 Shaft area. The drill hole assay information was recovered from the existing diamond drill logs. The historical descriptions were taken from a report by Peter J. Vamos, P. Eng, 2003.

Core recovery was excellent, 90% or better, in most cases, therefore the accuracy as well as the reliability of the results is high.

Drill core sampling included all mineralized zones with additional material taken from the wall rock on either side of the mineralization. The core samples were split using a regular core splitter. Half of the core became the "sample" while the other half was retained in labeled core boxes for future reference.

During the drilling of the new North C Zone it was suspected that the assays were not up to the expected grade based on visual observations, especially in those locations where fine granular gold was seen. To overcome the potential error the entire "sample" was crushed and pulverized by the assayer and fine screened before assaying. Any granular gold found by this process was reported and the assay was completed accordingly.

The samples were bagged, tagged and packed in cardboard boxes. The boxes were taped shut using packing tape. They were either shipped by the company to the assaying facility in Cochenor (Cochenor Assay Laboratory), or were shipped via Bus Express to Swastika to be analyzed by the Swastika Assay Laboratory; both laboratories were at the time certified by the Canadian Testing Association.

The gold assaying was done at Cochenour Fire Assay (drill cutting samples) and Swastika Labs (core). Based on the assay results, fire assay with gravimetric finish had a detection limit of 0.068 gpt Au. All trace and nil values are recorded as .001 gpt rather than using 0.034 gpt (equal to half the detection limit).

11.1.7.2 Underground Sampling

The company QAQC program and procedures for underground sampling are recorded in a report by P.J. Vamos, P. Eng, 2003. Sample locations and assay results are recorded on plans, sections and longitudinal views. Sample locations were measured and the assays recorded into the data base. The underground workings were re-sampled except those which were unsafe. The purpose of the sampling program was to verify the values and widths of the gold-bearing zones. The method used was chip sampling across the backs of the drifts. The wall rock was separated from the vein samples on both sides of the vein, resulting in, at the very least, three individual samples at each location.

The new drives were sampled on the backs at each round taken as well as sampling across each face or breast. Mapping the backs and each face (breast) was conducted simultaneously with the sampling. The individual samples were usually less than 1 m in length. Several hundred samples

were taken on each level and the results closely resembled the original (Honsberger) sampling (Vamos, P.J., 2003). No tables or comparisons of actual data is available.

11.1.7.3 Surface Diamond Drilling

The company and laboratory QAQC programs and procedures for the surface diamond drilling program are recorded in a report by P.J. Vamos, P. Eng, 2003. Assay information was transferred from existing logs. Original measurement units on the drill logs were imperial lengths and assay results reported as ounces per ton Au. Sample lengths were limited to improve the accuracy of the assay by reducing the nugget effect within the sample. The surface drilling has an average sample length of 0.51m with a maximum length of 0.92m and a minimum length of 0.30m. Duplicate assays were done through instructions of the company or as part of the laboratory QAQC and recorded on the drill logs. Samples with visible gold or suspected mineralized zones were assayed using screened metallics of fractions +100 and -100 mesh. The amount of material used for screening is unknown, all samples with screened metallic assay results also included multiple regular assay results. The following is a summary of the QA QC program for the surface diamond drilling program

- 19% of all samples duplicated
- 65% of samples assaying greater than 3 gpt Au also had a Screened Metallic Assay recorded
- 96% of samples assaying greater than 3 gpt Au have multiple duplicate results recorded

The following graphs compares the results of the duplicate sampling program and screened metallics assay results. Using the first Pulp, the duplicate assay has a slight positive bias, while in the second pulp, the duplicate has a slight negative bias. In both graphs there is higher variability in the 0-10 gpt Au range indicating a possible nugget effect. The screened metallics assay result confirms the values from using regular fire assay method. There are no indications of a major concern regarding a nugget effect in the sampling.

Figure 11.2 1985 Surface Diamond Drilling Duplicates Pulp 1

Figure 11.3 1985 Surface Diamond Drilling Duplicates Pulp 2

The company and laboratory QAQC programs and procedures for the surface diamond drilling program are recorded in a report by P.J. Vamos, P. Eng, 2003. There are no company inserted blanks or standards, at the time of the work a company's use of blanks and certified standards was not commonplace. The company did mitigate the risk of inaccurate assays by limiting sample length, duplicating samples and using the screened metallics assay method. The author considers the assay data from this program suitable for use in a resource study.

11.1.7.4 Underground Diamond Drilling

The company and laboratory QAQC programs and procedures for the underground diamond drilling program are recorded by P.J. Vamos, P. Eng, 2003. Assay information was transferred from existing logs. Original measurement units on the drill logs were imperial lengths and assay results reported as ounces per ton Au. Sample lengths were limited to improve the accuracy of the assay by reducing the nugget effect within the sample. The underground drilling has an average sample length of 0.42m with a maximum length of 0.61m and a minimum length of 0.30m. For samples with values greater than 1.0 gpt Au the average length drops to 0.36m with the same minimum and max sample lengths as previous. Duplicate assays were done through instructions of the company and recorded on the drill logs. Samples with visible gold or suspected mineralized zones were assayed using screened metallics of fractions +100 and -100 mesh. The amount of material used for screening is unknown, all samples with screened metallic assay results also included multiple regular assay results. The following is a summary of the QA QC program for the underground drilling program

- 19% of all samples duplicated
- 3% of all samples had Screened Metallic Analysis
- 66% of samples assaying greater than 3.4 gpt Au had a Screened Metallic Assay recorded
- 88% of samples assaying greater than 1.50 gpt Au have multiple duplicate results recorded

The following graphs compares the results of the duplicate sampling program and screened metallics assay results. Using the first Pulp, the duplicate assay has good reproducibility of the original assay. The screened metallics assay result confirms the values from using regular fire assay method. There is one outlier 921.26 gpt screened metallics vs 484.71 gpt average fire assay. It is very likely both values will be cut to a common number. There are no indications of a major concern regarding a nugget effect in the sampling.

Figure 11.5 1985 Underground Diamond Drilling Duplicates

Figure 11.6 1985 Underground Diamond Drilling Duplicates (0.0 to 100 gpt Au)

Figure 11.7 1985 Underground Diamond Drilling Screen Metallic Assay vs Average Fire Assay

The company and laboratory QAQC programs and procedures for the surface diamond drilling program are recorded in a report by P.J. Vamos, P. Eng, 2003. There are no company inserted blanks or standards, at the time of the work a company's use of blanks and certified standards was not commonplace. The company did mitigate the risk of inaccurate assays by limiting sample length, duplicating samples and using the screened metallics assay method. The author considers the assay data from this program suitable for use in a resource study.

11.1.8 Jamie Frontier 1986-1987

11.1.8.1 General

Jamie Frontier continued conducting surface drilling, underground drilling and underground sampling on the property in 1986 to 1987. The surface and underground drilling explored the #1 Shaft. #2 Shaft and North Vein areas. The drill hole assay information was recovered from the existing diamond drill logs. The historical descriptions were taken from a report by Peter J. Vamos, P. Eng, 2003.

Core recovery was excellent, 90% or better, in most cases, therefore the accuracy as well as the reliability of the results is high.

Drill core sampling included all mineralized zones with additional material taken from the wall rock on either side of the mineralization. The core samples were split using a regular core splitter. Half of the core became the "sample" while the other half was retained in labeled core boxes for future reference.

During the drilling of the new North C Zone it was suspected that the assays were not up to the expected grade based on visual observations, especially in those locations where fine granular gold was seen. To overcome the potential error the entire "sample" was crushed and pulverized by the assayer and fine screened before assaying. Any granular gold found by this process was reported and the assay was completed accordingly.

The samples were bagged, tagged and packed in cardboard boxes. The boxes were taped shut using packing tape. They were either shipped by the company to the assaying facility in Cochenour (Cochenour Assay Laboratory), or were shipped via Bus Express to Swastika to be analyzed by the Swastika Assay Laboratory; both laboratories were at the time certified by the Canadian Testing Association.

The gold assaying was done at Cochenour Fire Assay (drill cutting samples), Swastika Labs (core) and ALS Chemex Labs (core). Based on the assay results, fire assay with gravimetric finish had a detection limit of 0.068 gpt Au. All trace and nil values are recorded as .001 gpt rather than using 0.034 gpt (equal to half the detection limit).

11.1.8.2 Surface Diamond Drilling

The company and laboratory QAQC programs and procedures for the surface diamond drilling program are recorded in a report by P.J. Vamos, P. Eng, 2003. Assay information was transferred from existing logs. Original measurement units on the drill logs were imperial lengths and assay results reported as ounces per ton Au. Sample lengths were limited to improve the accuracy of the assay by reducing the nugget effect within the sample. The surface drilling has an average sample length of 0.32m with a maximum length of 0.61m and a minimum length of 0.23m. For samples with assays greater than 0.35 gpt Au have an average sample length of 0.30m with a maximum length of 0.23m. Duplicate assays were done through instructions of the company or as part of the laboratory QAQC and recorded on the drill logs. Samples with visible gold or suspected mineralized zones were assayed using screened metallics of fractions +100 and -100 mesh. The amount of material used for screening is unknown, samples

that were assayed using the Screened Metallic method did not have a regular fire assay result recorded. The following is a summary of the QA QC program for the surface diamond drilling program

- 10 % of all samples are either duplicated or had Screened Metallic Analysis
- 83% of samples assaying greater than 4.5 gpt Au were analyzed using Screened Metallic Assay method
- 74% of samples assaying greater than 1.0 gpt Au have multiple duplicate results recorded

The following graphs compares the results of the duplicate sampling program and screened metallics assay results. Using the first Pulp, the duplicate assay has a slight positive bias, while in the second pulp, the duplicate has a slight negative bias. In both graphs there is higher variability in the 0-10 gpt Au range indicating a possible nugget effect. The screened metallics assay result confirms the values from using regular fire assay method. There are no indications of a major concern regarding a nugget effect in the sampling.

Figure 11.8 1986 Surface Diamond Drilling Duplicates Pulp 1

Figure 11.9 1986 Surface Diamond Drilling Duplicates Pulp 1 (< 5.0 gpt Au)

There are no recorded QA QC procedures or assay certificates available for the 1986 surface drill program. At the time of the work the company use of blanks and certified standards was not commonplace. The laboratory used blanks and duplicate samples as part of their QA QC. The company did mitigate the risk of inaccurate assays by using duplicate samples and using the screened metallics assay method. The author considers the assay data from this program suitable for use in a resource study.

11.1.8.3 Underground Diamond Drilling

The company and laboratory QAQC programs and procedures for the underground diamond drilling program are recorded by P.J. Vamos, P. Eng, 2003. Assay information was transferred from existing logs. Original measurement units on the drill logs were imperial lengths and assay results reported as ounces per ton Au. Sample lengths were limited to improve the accuracy of the assay by reducing the nugget effect within the sample. The underground drilling has an average sample length of 0.33m with a maximum length of 0.91m and a minimum length of 0.16m. For samples with values greater than 0.35 gpt Au the average length is 0.33m with a maximum length of 0.91m and a minimum length of 0.16m. Duplicate assays were done through instructions of the company and recorded on the drill logs. Samples with visible gold or suspected mineralized zones were assayed using screened metallics of fractions +100 and -100 mesh. The amount of material used for screening is unknown. The following is a summary of the QA QC program for the underground diamond drilling program

- 9% of all samples duplicated
- 2 samples had Screened Metallic Analysis
- 92% of samples assaying greater than 1.0 gpt Au have duplicate assay recorded

The following graphs compares the results of the duplicate sampling program. Using the first Pulp, the duplicate assay has good reproducibility of the original assay and shows no bias between the original and duplicate sample. There are no indications of a major concern regarding a nugget effect in the sampling.

Figure 11.10 1986-1987 Underground Diamond Drilling Duplicates

The company and laboratory QAQC programs and procedures for the underground diamond drilling program are recorded in a report by P.J. Vamos, P. Eng, 2003. There are no company inserted blanks or standards, at the time of the work a company's use of blanks and certified standards was not commonplace. The company did mitigate the risk of inaccurate assays by limiting sample length, duplicating samples and using the screened metallics assay method. The author considers the assay data from this program suitable for use in a resource study.

11.1.9 Pezgold 1988 - 1989

Pezgold conducted surface drilling on the property in 1986. The surface drilling explored the North Vein area and a zone 500 metres east of the North Vein. The assay information was recovered from the existing diamond drill logs.

The company and laboratory QAQC programs and procedures for the surface diamond drilling program are not recorded. Assay information was transferred from existing logs. Original measurement units on the drill logs were imperial lengths and assay results reported as ounces per ton Au. Based on the assay results, fire assay with gravimetric finish had a detection limit of 0.034 gpt Au. All trace and nil values are recorded as .001 gpt rather than using 0.017 gpt (equal to half the detection limit).

Sample lengths were significantly longer then previous drill programs. The drilling program was for exploration and not for resource development. The surface drilling has an average sample length of 0.69m with a maximum length of 1.95m and a minimum length of 0.21m. For samples

with assays greater than 1.0 gpt Au have an average sample length of 0.63m with a maximum length of 1.53m and a minimum length of 0.30m. Duplicate assays were done through instructions of the company or as part of the laboratory QAQC and recorded on the drill logs. The following is a summary of the QA QC program for the surface diamond drilling program.

- 4 % of all samples are duplicated
- 67% of samples assaying greater than 0.48 gpt Au have multiple duplicate results recorded

The following graphs compares the results of the duplicate sampling. The plotted points show poor duplication in the 0.0 to 8.0 grams range. Within this range there are 57 duplicates of which 17 (30%) have a difference greater than -1.0 gpt Au between the original and duplicate assay. The average difference between these assays is -2.83 gpt Au. These results indicate possible problems with laboratory sample preparation, sample contamination in the lab or character of the gold mineralization having a "nugget" effect within the sample.

Figure 11.12 1988 Surface Diamond Drilling Duplicates Pulp 1

Figure 11.13 1988 Surface Diamond Drilling Duplicates Pulp 1 (< 15.0 gpt Au)

There are no recorded QA QC procedures or assay certificates available for the 1988 surface drill program. At the time of the work the use of company inserted blanks and certified standards was not commonplace. The company did attempt to mitigate the risk of inaccurate assays by using duplicate samples. The program results indicated a problem with possibly the laboratory or character of the mineralization. The author considers the assay data from this program of poor quality and would limit the use of this data for inferred resources unless higher quality data is available.

11.1.10 Zenda / Vedron 2003

Zenda conducted surface drilling on the property in 2003. Six holes were completed, five in the Shaft 1 area and the sixth targeted a geophysical anomaly west of Shaft 1. The assay information was recovered from the existing diamond drill logs.

The company and laboratory QAQC programs and procedures for the surface diamond drilling program are not recorded. Assay information was transferred from existing logs. Original measurement units on the drill logs are metric lengths and assay results reported as grams per tonne Au. All values recorded as <0.01 Au gpt are recorded as .005 gpt Au, equal to half the detection limit.

The surface drilling has an average sample length of 0.44m with a maximum length of 1.00m and a minimum length of 0.30m. For samples with assays greater than 1.0 gpt Au have an average sample length of 0.46m with a maximum length of 0.70m and a minimum length of 0.30m. Duplicate assays were done through instructions of the company or as part of the laboratory QAQC and recorded on the drill logs. The following is a summary of the QA QC program for the surface diamond drilling program.

- 18 % of all samples are duplicated
- 67% of samples assaying greater than 1.0 gpt Au have duplicate results recorded
- 50% of samples assaying greater than 10.0 gpt Au have screened metallic results recorded

The following graphs compares the results of the duplicate sampling program. Using the first Pulp, the duplicate assay has good reproducibility of the original assay and shows no bias between the original and duplicate sample. There are no indications of a major concern regarding a nugget effect in the sampling.

There are no recorded QA QC procedures or assay certificates available for the 2003 surface drill program. At the time of the work the use of company inserted blanks and certified standards was not commonplace. The company did mitigate the risk of inaccurate assays by using duplicate samples and using the screened metallics assay method. The author considers the assay data from this program suitable for use in a resource study.

11.1.11 Hy Lake 2007 - 2012

The sample preparation, analyses and security procedures for drilling carried out at the Property for the period from 2007 to 2012 have been described in the following report:

• Guy, Kenneth, February 2015. West Red Lake Gold Mines Inc., Summary Report on a Diamond Drilling Programme, 2014, Rowan Property.

All drill core from the 2007 to 2012 drill programs was picked up from the drill site and directly delivered to the Mount Jamie Mine core logging facility by core technicians.

The core technicians then measured the drill core and stapled a metal tag to each of the core boxes with the hole number, box number and footage recorded on the tag. The technicians also took measurements from the drill core, including RQD, core recovery, and orientation of any structures, contacts and veins.

Ninety-nine percent (99%) of the core had 100% core recovery and Hy Lake stipulated that no drilling, sampling or recovery factors were encountered that would materially impact the accuracy and reliability of the analytical results. No factors were identified by the authors, which may have resulted in a sample bias.

11.1.11.1 Sampling Protocol

Company geologists logged the drill core, recording the lithological, structural, alteration and mineralogical features observed, as well as selected samples to be analyzed based on the alteration, mineralization and veining observed.

Drill hole intervals were selected by the geologist based on lithology, alteration and mineralization. These were split, using a diamond blade rock saw. Half of each sample was sealed in a plastic sample bag along with a sample identification tag. The remaining half of each sample was replaced in the core box as a permanent record. Core is stored on the Mount Jamie Mine property.

All drill holes were logged and sampled at the Mount Jamie Mine field camp. Assaying was completed by either Act Labs or SGS at their Red Lake laboratories. Gold analyses were performed by fire assay, however higher grade (>5 g/t Au) samples were analyzed with a gravimetric finish.

After the 2007 drill program Hy Lake maintained their own Quality Assurance and Quality Control Program ("QA/QC Program") for the drilling carried out on the Property. Certified gold reference standards, blanks and field duplicates were routinely inserted into the sample stream as part of Hy Lake quality control/quality assurance program.

11.1.11.2 Analytical and Security

Analytical work was conducted by both ACT Laboratory and SGS Laboratory based out of Red Lake, ON.

Samples were transported directly to the laboratories in Red Lake, Ontario by core technicians for sample preparation and analyses.

Both labs have developed a Quality Management System ("QMS") designed to ensure the production of consistently reliable data and implemented this at each of its locations. The system covers all laboratory activities and takes into consideration the requirements of ISO standards.

The labs maintain ISO registrations and accreditations, and were registered or pending registration to ISO 9001:2008.

The samples were dried and crushed to 70% passing minus ten (-10) mesh. A Jones riffle splitter was used to take a 250-gram sub sample for pulverizing and the reject portion was bagged and stored. After reducing the 250-gram sample to 85% passing -200 mesh, the sample was thoroughly blended and a 30-gram charge was assayed for gold by standard fire assay-ICP finish. Gold values in excess of 10 ppm were re-analyzed by fire assay with gravimetric finish for greater accuracy. Gold was analyzed by fire assay – atomic absorption (FA-AA) methods, with a gravimetic assay performed on those samples assaying greater than 10 grams per tonne Au.

Total metallics is carried out on samples with visible gold at the request of the geologist in charge. Core samples are crushed and ground completely so that there is no reject. The sample is screened through a 150 mesh screen and the + fraction and – fraction are weighted. A representative 30 g. weight of each fraction is submitted to fire assay for fusion and cupellation followed by gravimetric determination. The total gold content is calculated by weighting the + and – fractions and converting to oz/tonne (as described on SGS fact sheet).

11.1.11.3 Hy-Lake 2007

Hy-Lake conducted surface drilling on the property in 2007. Exploration drilling took place in the #1 Shaft and #2 Shaft areas and east-west along strike. The assay information was provided by existing diamond drill logs and assay certificates.

Original measurement units on the drill logs are metric lengths and assay results reported as grams per tonne Au. Values recorded as <0.01 Au gpt are recorded as .005 gpt Au, equal to half the detection limit and values <.001 Au gpt are recorded as 0.001 Au gpt.

The following QA QC graphs for ALS Chemex labs cover the period August to October 2007. The graphs show no issues with assay results for blanks and certified standards. There is one failure on standard OxL51 on assay certificate TB07091584 dated Sept 11 2007. The certificate contained 126 samples with 3 samples having grades between 1.2 to 2.1 gpt Au. The other nine standards assayed on the certificate passed. The authors opinion is that the data supplied by the laboratory is suitable for a resource study.

NI 43- 101 Technical Report - West Red Lake Project

Selected core was sampled with an average sample length of 0.44m with a maximum length of 2.5m and a minimum length of 0.20m. For samples with assays greater than 1.0 gpt Au have an average sample length of 0.55m with a maximum length of 1.4m and a minimum length of 0.20m. Duplicate assays were done through instructions of the company and as part of the laboratory QAQC and recorded on the drill logs. The following is a summary of the QA QC program for the surface diamond drilling program.

- 5 % of all samples are duplicated
- 25% of samples assaying greater than 0.75 gpt Au have screened metallic results recorded

The following graphs compares the results of the duplicate sampling program. Using the first Pulp, the duplicate assay has good reproducibility of the original assay and shows no bias between

the original and duplicate sample. There are no indications of a major concern regarding a nugget effect in the sampling.

Figure 11.16 2007 Surface Drilling Assay Duplicates

Figure 11.17 2007 Surface Drilling Assay Duplicates < 10 gpt

There are recorded QA QC procedures and assay certificates available for the 2007 surface drill program. At the time of the work the use of company inserted blanks and certified standards was not commonplace. The company did mitigate the risk of inaccurate assays by using duplicate samples and using the screened metallics assay method. The author considers the assay data from this program suitable for use in a resource study.

11.1.11.4 Hy-Lake 2011

The 2011 drilling program included drilling targets on the Mt Jamie Zone, Rowan Zone and the NT Zone. For this part of the report only the holes drilled on the Mt Jamie are considered (HY-11-01 to HY-11-31) Exploration drilling took place in the #2 Shaft area, North Vein and east-west along strike. The assay information was provided by existing diamond drill logs and confirmed with assay certificates.

Original measurement units on the drill logs are metric lengths and assay results reported as grams per tonne Au. Values recorded as <0.01 Au gpt are recorded as .005 gpt Au, equal to half the detection limit.

The laboratory QA QC program included;

- Duplicated 14% of the samples
- Split 7% of the samples
- 9% added certified standards
- 9% added blanks

The following QA QC graphs from Activation Laboratories cover the period February to April 2011.

Figure 11.19 2011 Lab Standard CDN-GS-1P5C
2

1.9

1.8

1.7

1.6 1.5 1.4

1.3

1.2 1.1

1

0

5

10

Figure 11.20 2011 Lab Standard CDN-GS-20A

Figure 11.22 2011 Lab Standard CDN-GS-3H

Figure 11.24 2011 Lab Standard CDN-GS-P2

15

Figure 11.25 2011 Lab Standard CDN-GS-P3A

Figure 11.21 2011 Lab Standard CDN-GS-2E

2011 Laboratory Standard CDN-GS-2E

+2 SD

-2 SD

February - March 2011

20

25

30

Figure 11.26 2011 Lab Standard CDN-GS-P7B Figure 11.27 2011 Lab Assay Duplicates

The graphs show no issues with assay results for blanks and certified standards. There was an error on certificate A11-1553 with standards CDN-GS-3H and CDN-GS-P7B being switched. The assay certificates returned on March 10 and 11 had eight warnings and two failures of seventeen assays of standard CDN-GS-P3A. The laboratory may have been having issues with this standard. After March 11 the laboratory was using standards CDN-GS-P2 and CDN-GS-P3A for the low end standard with no issues.

The authors opinion is that the data supplied by the laboratory is suitable for a resource study.

During the 2011 diamond drill program each hole is entirely split and sampled. Sample lengths are 1 meter. Duplicate samples were systematically selected by the company. The following is a summary of the company QA QC program for the surface diamond drilling program.

- Duplicate sample every 49 samples (including blanks and standards)
- Insert standard every 49 samples (including duplicates and blanks)
- Insert blank every 49 samples (including duplicates and standards)

The following graphs illustrate the results of the company QA QC Program.

Figure 11.29 2011 Company Blanks

Figure 11.32 2011 Company Hi Standards

Figure 11.33 2011 Company Low Standards

Inserted blanks indicate no issues with contamination during crushing, grinding, fire assay or measurements.

The sample duplicates requested by the company had one major issue on certificate A11-2123. The original sample graded .016 gpt Au while the duplicate graded 4.231 gpt Au. It is not known

what actions the company took regarding this result. The remainder of the results indicate no issues with reproducibility of samples from duplicates.

The certified standards used are unknown. For the Hi Standard the assayed data averaged 8.06 gpt Au with a double standard deviation of 0.40 gpt. The standard deviation is comparable to certified standards where the average Au value is between 6.3 to 7.4 gpt Au. There are two warnings on the low side in holes HY-11-02 and HY-11-04, the remaining standard, duplicates and blanks showed no issue. Laboratory QA /QC showed no issues with the assay certificates. Neither hole had values greater than 1.0 gpt Au therefore would not be used in a resource study.

For the Low Standard the assayed data averaged 2.43 gpt Au with a doubled standard deviation of 0.32 gpt. One outlier value (.018 gpt Au) was not used for the calculation. The standard deviation is slightly higher compared to certified standards where the average Au value is between 1.9 to 3.5 gpt Au. There are two warnings on the low side in holes HY-11-09 and HY-11-16, the remaining standard, duplicates and blanks showed no issue. For HY-11-09 a blank may have been submitted instead of a standard. The company QA /QC showed no issues with the assay certificates.

There are recorded QA QC procedures and assay certificates available for the 2011 surface drill program. The author considers the assay data from this program suitable for use in a resource study.

11.1.11.5 Hy-Lake 2012

The 2012 drilling program included drilling targets east along strike from the #1 Shaft and #2 Shaft, and north of the #1 Shaft. The assay information was provided by existing diamond drill logs and confirmed with assay certificates.

Original measurement units on the drill logs are metric lengths and assay results reported as grams per tonne Au. Values recorded as <0.01 (AA)Au gpt are recorded as .005 gpt Au, equal to half the detection limit. Values recorded as <0.03 (Gravimetric) Au gpt are recorded as .015 gpt Au, equal to half the detection limit.

The laboratory QA QC program included;

- Duplicated 9% of the samples
- Split 5% of the samples
- 7% added certified standards
- 1% added blanks (some certificates did not record blanks)

The following QA QC graphs Activation Laboratories cover the period March to May 2012.

Figure 11.35 2012 Lab Standard CDN-GS-1H

Figure 11.36 2012 Lab Standard CDN-GS-20A

Figure 11.38 2012 Lab Standard CDN-GS-2K

Figure 11.37 2012 Lab Standard CDN-GS-2C

Figure 11.39 2012 Lab Standard CDN-GS-8B

Figure 11.40 2012 Lab Standard OxA89

Figure 11.41 2012 Lab Standard OxE86

Figure 11.42 2012 Lab Standard OxF85

Figure 11.44 2012 Lab Standard OxK79

Figure 11.45 2012 Lab Standard OxJ80

The graphs show no issues with assay results for blanks. There are no indications of cross contamination from the fire assay or analysis process. The samples grading 0.015 gpt Au were recorded using the gravimetric measurement. There is an outlier of 0.035 on assay certificate A12-03200 that may be due to a recording error by the laboratory. The sample is listed as a screen metallic total with no other support data. The graphs for the standard assays show no major issues. There is an assay failure on assay certificate A12-03200 with an assay result above the acceptable range on standard CDN-GS-2C. This assay certificate covers the results for drill hole HY-12-25, the remaining fourteen standards assayed are within value limits. There are sample warnings (within two to three standard deviations or less than 10% of the certified average value) from OxJ80 (4 assays on the low side), and standard OxK79 (2 assays on the high side). The laboratory duplicates and splits show good repeatability. The authors opinion is that the data supplied by the laboratory is suitable for a resource study.

For the 2012 diamond drill program each hole is entirely split and sampled. Sample lengths are 1 meter. Duplicate samples were systematically selected by the company. The following is a summary of the company QA QC program for the surface diamond drilling program.

- Duplicate sample every 49 samples (including blanks and standards)
- Insert standard every 49 samples (including duplicates and blanks)
- Insert blank every 49 samples (including duplicates and standards)

The following graphs present the results of the company QA QC Program.

Figure 11.52 2012 Company Duplicates <0.5 gpt Au

Figure 11.53 2012 Company Hi Standards

Inserted blanks indicate no issues with contamination during crushing, grinding, fire assay or measurements.

The sample duplicates requested by the company had one issue on certificate A12-02833. The original sample graded 2.56 gpt Au while the duplicate graded 0.048 gpt Au. This may be a reflection of the character of the gold mineralization rather than a sampling error. The database drill hole lithology does not indicate this to be a mineralized zone. It is not known what actions the company took regarding this result. The remainder of the QA QC on this certificate from the laboratory and company results indicate no issues. The remaining duplicate samples show no major issues.

The certified standards used are unknown. For the Hi Standard the assayed data averaged 7.69 gpt Au (2011-8.06) with a doubled standard deviation of 0.76 gpt Au (2011-0.40 gpt). There is no indication that the standards used in 2012 were changed from 2011. The average value is 4% lower than the 2011 average of 8.06 gpt Au. and there is a significant increase in the standard deviation, 0.20 in 2011 and 0.38 in 2012. The source and storage of the standard is unknown. If the standard was supplied in a bulk jar or lined paper rather then a mylar packet – environmental factors during storage may have had a negative effect on the standard material. Using the greater then ten times the average value there are two failures in the data set. One occurs in drill hole HY-12-05, which has one value of 1.39 gpt Au and the remainder are below 0.30 gpt Au, the other in drill hole HY-12-16 returned values under 0.60 gpt Au. These two failures do not negatively impact the drill hole assay data.

The Low Standard assayed data averaged 2.247 gpt Au (2011-2.43) with a standard deviation of 0.13 gpt Au (2011-0.16 gpt). There is no indication that the standards used in 2012 were changed from 2011. The average value is 8% lower than the 2011 average of 2.43 gpt Au. and the standard deviation is comparable between the 2011 and 2012 programs. There is one warning.

There are recorded QA QC procedures and assay certificates available for the 2012 surface drill program. The company and laboratory inserted blanks and certified standards as part of their QA QC programs. The results indicated no major issues with the sampling and assaying. The author considers the assay data from this program suitable for use in a resource study.

11.1.12 West Red Lake 2017

The 2017 drilling program included drilling targets in the Shaft 1 area and the North Vein. The holes in the Shaft 1 area were also designed to confirm the rock conditions around the old underground workings. The assay information was provided by existing diamond drill logs and confirmed with assay certificates.

Original measurement units on the drill logs are metric lengths and assay results reported as grams per tonne Au. Values recorded as <0.005 (AA)Au gpt are recorded as .003 gpt Au, equal to half the detection limit.

Analytical work for RLG was conducted by SGS Laboratory based out of Red Lake, ON. Gold was analyzed by fire assay – atomic absorption (FA-AA) methods, with a gravimetic assay performed on those samples assaying greater than 10 gpt Au. Screened metallic assays were also

completed on samples selected by the company geologist. SGS Laboratory is independent of RLG and the DLV.

SGS Laboratory has developed a Laboratory Information Management System ("SLIM") designed to ensure the production of consistently reliable data and implemented this at each of its locations. The system covers all laboratory activities and takes into consideration the requirements of ISO standards.

The laboratory QA QC program includes an insertion frequency of 14% which includes sample reductions, blanks and duplicates, method blanks, weighed pulp replicates and reference materials.

SLIM automatically flags whenever a QC material fails to meet established statistical rules preset in the system. The SLIM QC module is based on the Thompson and Howarth precision curve which sets tolerance requirements that are associated with the detection limit and expected precision of the analyte within the method. These rules are based on rigorous method validation requirements established by SGS methodology.

Sample reduction blanks, method blanks, reagent blanks are used to assess (and correct for when appropriate) responses other than those inherent to the blank material. If failure occurs, that cannot be accounted for based on set rules for exemption; a minimum of 25% of the samples including the failed blank is repeated. Repeated sample failure results in investigation and repeating the entire batch.

When inputting the acceptable values and associated tolerances for duplicates, replicates and reference materials consideration is given to the fitness for purpose of the method as well as the certification process of reference material when compared to the method for which the material will be used. Repeats are performed based on a percentage of reference material, duplicate and replicate failures to the total number of these materials inserted in a batch and range from 25-100%.

The SGS Laboratory in Red Lake is accredited to ISO/IEC 17025:2017 (General requirements for the competence of testing and calibration laboratories).

The samples were dried and crushed to 75% passing 2mm. A riffle splitter was used to take a 500g sub sample for pulverizing and the reject portion was bagged and stored. After reducing the 500g sample to 85% passing -75 microns, the sample was thoroughly blended and a 50-gram charge was assayed for gold by standard fire assay-ICP finish. Gold values in excess of 10 ppm were reanalyzed by fire assay with gravimetric finish for greater accuracy.

Total metallics is carried out on samples with visible gold at the request of the geologist in charge. Core samples are crushed to 75% passing 2mm. A riffle splitter was used to take a 1000g sub sample for pulverizing and the reject portion was bagged and stored. This 1000g sample is screened through a 150 mesh screen and the + fraction and – fraction are weighted. The entire plus fraction is assayed and the undersize is assayed in duplicate using a 50g charge. Each fraction is submitted to fire assay for fusion and cupellation followed by gravimetric determination. The total gold content is calculated by weighting the + and – fractions and converting to gpt Au.

The following QA QC graph for SGS Laboratories cover the period June to August 2017.

Figure 11.55 2017 Lab Duplicates

The graphs show no issues with assay results for duplicates. There are no indications of cross contamination from the fire assay or analysis process. The authors opinion is that the data supplied by the laboratory is suitable for a resource study.

The drill core from the 2017 drill program was delivered from the drill to the Company's Mount Jamie core logging facility by the drilling contractor at the end of each shift.

The core technicians then unpacked and organized the core boxes in the logging facility. The technicians measured the drill core lengths and stapled a metal tag to each of the core boxes with the hole number, box number and footage recorded on the tag. The technicians also took measurements from the drill core, including RQD and core recovery. Discrepancies were brought to the attention of the geologist for resolution.

Ninety-nine percent (99%) of the core had 100% core recovery and RLG has stipulated that no drilling, sampling or recovery factors were encountered that would materially impact the accuracy and reliability of the analytical results. No factors were identified by the authors, which may have resulted in a sample bias.

Company geologists logged the drill core, recording the lithological, structural, alteration and mineralogical features observed, as well as selected samples to be analyzed based on the alteration, mineralization and veining observed.

Core photographs were taken and are stored on the company computers.

Sections of drill core to be assayed were identified by the geologist during core logging. Sample lengths average 1.49m with a minimum length of 0.5 and maximum 2.5 metres. These sections were split, using a diamond blade rock saw. Half of each sample was sealed in a plastic sample bag along with a sample identification tag. The remaining half of each sample was replaced in the core box and a copy of the sample identification tag stapled in place as a permanent record. Core is stored on the Mount Jamie Mine property. Approximately five plastic sample bags were placed into each labelled rice bags for transport to the lab. Samples were transported from the Mt Jamie Core Facility to SGS Labs in Red Lake by the Camp Manage and Core Technician using a company vehicle.

RLG maintained their own Quality Assurance and Quality Control Program ("QA/QC Program") for the drilling carried out on the Property. Certified gold reference standards and blanks were systematically inserted into the sample stream as part of RLG quality control/quality assurance program.

The following is a summary of the company QA QC program for the surface diamond drilling program;

- Insert standard every 49 samples (including blanks)
- Insert blank every 49 samples (including standards)

The following graphs present the results of the company QA QC Program.

Figure 11.56 2017 Company Blanks

Figure 11.57 2017 Company CDN-GS-7E

Figure 11.58 2017 Company CDN-GS-2K

Inserted blanks indicate no issues with contamination during crushing, grinding, fire assay or measurements.

The inserted certified standards generated three warnings on standard CDN-GS-7E and two warnings on standard CDN-GS-2K. The largest warning was from sample 8417 (8.459 gpt Au).

10

This certified sample was inserted in drill hole MJ-17-08 which had no assay results greater than 1.0 gpt Au.

There are recorded QA QC procedures and assay certificates available for the 2017 surface drill program. The company and laboratory inserted blanks and certified standards as part of their QA QC programs. The results indicated no major issues with the sampling and assaying. The author considers the assay data from this program suitable for use in a resource study.

11.2 Rowan Mine Property

Since 1937 there has been 27 diamond drill programs conducted by 10 different companies. Between 1937 and 2008 there were no company QA QC programs being run.

The following table summarizes the number of drill holes, total metres drilled, QAQC Programs and laboratories used.

YEAR	Company	DDH Series in Database	No. of Collars	Laboratory Certificates	Assay Numbers	Detection Limit gpt Au	Comment
1937	Lake Rowan Gold Mines	RWS-37-**	12	Red Crest / Bell White	151	0.34	
1937	Lake Rowan Gold Mines	RWU-37-**	1	Red Crest	19	0.34	
1938	Lake Rowan Gold Mines	RWU-38-**	11	Red Crest / Chemex	105	0.34	
1946	Rowan Consolidated Mines	RW-46-**	14	Dickenson / Bell White	257	0.34	
1953	Rowan Consolidated Mines	RWU-53-**	38	Dickenson	884	0.34	
1958	Rowan Consolidated Mines	RW-58-**	7	Dickenson	120	0.34	
1983	Pipestone Bay Resources	P-83-**	2	Bourlanmac	299	0.34	
1984	Goldquest	RW-84-**	14	Cochenour P Okanski	943	0.34	
1985	Goldquest	RW-85-**	45	Cochenour P Okanski	699	0.34	
1987	Goldquest	RW-87-**	6		301	0.01	
1989	Chevron	RW-89-**	4		1122		
1990	Chevron	RW-90-**	6	Chemex	1334		
1993	Goldquest	RW-93-**	3		116		
1997	Goldcorp	RW-97-**	2		261		
2001	Goldcorp	RW-01-**	4	Chemex	219		
2006	Kings Bay	RW-06-**	8	SGS	434	0.01	
2007	Hy Lake Gold	HYR-07-**	8	Chemex	1050	0.001	
2008	Hy Lake Gold	HYR-08-**	3	SGS	796	0.01	
2010	Hy Lake Gold	HY-10-**	4		1508		Co Standards and Duplicates
2011	Hy Lake Gold	HY-11-**	4	Act Labs	1633	0.01	Co Standards and Duplicates
2013	West Red Lake	RLG-13-**	8	Act Labs	3172	0.01	Co Standards and Duplicates
2014	West Red Lake	RLG-14-**	10	Act Labs	395	0.01	Co Standards and Duplicates
2015	West Red Lake	RLG-15-**	6	SGS	368	0.005	Co. Standards Blanks 1/4 core duplicates, LAB QA QC
2016	West Red Lake	RLG-16-**	15	SGS	1579	0.005	Co. Standards Blanks 1/4 core duplicates, LAB QA QC
2017	West Red Lake	RLG-17-**	7	SGS	1272	0.005	Co. Standards Blanks 1/4 core duplicates, LAB QA QC
2018	West Red Lake	RLG-18-**	2	SGS	678	0.005	Co. Standards Blanks 1/4 core duplicates, LAB QA QC
2021	West Red Lake	RLG-21-**	20	SGS	2083	0.005	Co. Standards Blanks 1/4 core duplicates, LAB QA QC

Table 11.2.1 Historic Summary of QAQC

11.2.1 Lake Rowan Gold Mines 1937 - 1938

Lake Rowan Gold Mines conducted surface and underground drilling on the property between 1937 to 1938. The assay information was listed in the database and 75% of the assays were confirmed by assay certificates.

The company and laboratory QAQC programs and procedures for diamond drilling and assaying are not recorded. However it appears they may have limited the sample length to obtain a representative sample. The surface and underground drilling programs have an average sample length of 0.63m, with a maximum length of 12.25m and a minimum length of 0.07m. Sample length of samples grading above 6.0 gpt Au averaged 0.29m.

Lake Rowan Gold Mines did send reject material from 140 samples comparing the Red Crest Assay Lab to J.W.N Bell Assay Lab in Kenora.

Figure 11.2.1 Graph of Assay Comparison Red Crest Lab vs J.W.N Bell Lab

The laboratory QAQC program is unknown. Based on the assay certificates, fire assay with gravimetric finish had a detection limit of 0.34 gpt Au. Based on this value, trace and nil values are recorded as .001 gpt rather than using 0.17 gpt (equal to half the detection limit) which would be anomalous using current measuring technology.

Based on the lack of recorded QA QC procedures, assay certificates, the author considers the assay data from this program suitable to either limit mineralized zones or used with assay results from more recent drilling, if a zone is solely defined by these holes the zone should be inferred until confirmed with more recent results.

11.2.2 Rowan Consolidated Mines 1946 - 1958

Rowan Consolidated Mines conducted surface and underground drilling on the property between 1946 to 1958. The assay information was listed in the database and 60% of the assays were confirmed by assay certificates.

The company and laboratory QAQC programs and procedures for diamond drilling and assaying are not recorded. To mitigate bias in assaying they limited the sample length to obtain a representative sample. The surface and underground drilling programs have an average sample length of 0.41m, with a maximum length of 1.95m and a minimum length of 0.03m. Sample length of samples grading above 6.0 gpt Au averaged 0.22m.

The laboratory QAQC program is unknown. Based on the assay certificates, fire assay with gravimetric finish had a detection limit of 0.34 gpt Au. Based on this value, trace and nil values are recorded as .001 gpt rather than using 0.17 gpt (equal to half the detection limit) which would be anomalous using current measuring technology.

Based on the lack of recorded QA QC procedures, the author considers the assay data from this program suitable to either limit mineralized zones or used with assay results from more recent drilling, if a zone is solely defined by these holes the zone should be inferred until confirmed with more recent results.

11.2.3 1983 - 2006

A number of companies conducted surface diamond drilling programs in the Rowan Shaft Area. Rowan Consolidated Mines conducted surface and underground drilling on the property between 1946 to 1958. The assay information was listed in the database and 25% of the assays were confirmed by assay certificates.

Laboratory QAQC programs and company QAQC procedures for diamond drilling and sampling are not recorded.

During Goldcorps 1985 diamond drill program the company sent 64 pulp samples from the Paul Okanski Cochenour Lab to X-Ray Assay Labs Toronto. There was a slight positive bias in the data above 1.0 OPT Au.

Figure 11.2.2 Graph of Assay Comparison Cochenour Lab vs X-Ray Assay Lab

Based on the lack of recorded QA QC procedures, the author considers the assay data from this program suitable to either limit mineralized zones or used with assay results from more recent drilling, if a zone is solely defined by these holes the zone should be inferred until confirmed with more recent results.

Hy Lake Gold has recorded QAQC, sample preparation, analyses and security procedures for drilling carried out at the Property for the period from 2007 to 2012 and have been described in the following report: Guy, Kenneth, February 2015. West Red Lake Gold Mines Inc., Summary Report on a Diamond Drilling Program, 2014, Rowan Property.

All drill core from the 2007 to 2012 drill programs was picked up from the drill site and directly delivered to the Company's Mount Jamie Mine core logging facility bycore technicians.

The core technicians then measured the drill core and stapled a metal tag to each of the core boxes with the hole number, box number and footage recorded on the tag. The technicians also took measurements from the drill core, including RQD, core recovery, and orientation of any structures, contacts and veins.

Ninety-nine percent (99%) of the core had 100% core recovery and Hy Lake has stipulated that no drilling, sampling or recovery factors were encountered that would materially impact the accuracy and reliability of the analytical results. No factors were identified by the authors, which may have resulted in a sample bias.

Geologists logged the drill core, recording the lithological, structural, alteration and mineralogical features observed, as well as selected samples to be analyzed based on the alteration, mineralization and veining observed.

Drill hole intervals were selected by the geologist based on lithology, alteration and mineralization. These were split, using a diamond blade rock saw. Half of each sample was sealed in a plastic sample bag along with a sample identification tag. The remaining half of each sample was replaced in the core box as a permanent record. Core is stored on the Mount Jamie Mine property.

All drill holes were logged and sampled at the Mount Jamie Mine field camp. Assaying was completed by either Act Labs or SGS at their Red Lake laboratories. Gold analyses were performed by fire assay, however higher grade (>5 g/t Au) samples were analyzed with a gravimetric finish.

After the 2009 drill program Hy Lake maintained their own Quality Assurance and Quality Control Program ("QA/QC Program") for the drilling carried out on the Property. Certified gold reference standards, blanks and field duplicates were routinely inserted into the sample stream as part of RLG quality control/quality assurance program.

Analytical work for RLG was conducted by both ACT Laboratory and SGS Laboratory based out of Red Lake, ON.

Samples were transported directly to the laboratories in Red Lake, Ontario by RLG core technicians for sample preparation and analyses.

Both labs have developed a Quality Management System ("QMS") designed to ensure the production of consistently reliable data and implemented this at each of its locations. The system covers all laboratory activities and takes into consideration the requirements of ISO standards.

During this period the labs maintain ISO registrations and accreditations, and were registered or pending registration to ISO 9001:2008.

The samples were dried and crushed to 70% passing minus ten (-10) mesh. A Jones riffle splitter was used to take a 250-gram sub sample for pulverizing and the reject portion was bagged and stored. After reducing the 250-gram sample to 85% passing -200 mesh, the sample was thoroughly blended and a 50-gram charge was assayed for gold by standard fire assay-ICP finish. Gold values in excess of 10 ppm were re-analyzed by fire assay with gravimetric finish for greater accuracy.

Total metallics is carried out on samples with visible gold at the request of the geologist in charge. Core samples are crushed and ground completely so that there is no reject. The sample is screened through a 150 mesh screen and the + fraction and - fraction are weighted. A representative 50 g. weight of each fraction is submitted to fire assay for fusion and cupellation followed by gravimetric determination. The total gold content is calculated by weighting the + and - fractions and converting to oz/tonne (as described on SGS fact sheet).

The following QA QC graphs for ALS Chemex labs cover the period August to October 2007. The graphs show no issues with assay results for blanks and certified standards. There is one failure on standard OxL51 on assay certificate TB07091584 dated Sept 11 2007. The certificate contained 126 samples with 3 samples having grades between 1.2 to 2.1 gpt Au. The other nine standards

assayed on the certificate passed. The authors opinion is that the data supplied by the laboratory is suitable for a resource study.

Figures 11.2.3 2007 Laboratory QA/QC Results

The authors opinion is that the data supplied by the laboratory is suitable for a resource study.

The following QA QC graphs from Activation Laboratories cover the period February to April 2011.

Figure 11.2.7 2011 Lab Standard CDN-GS-1P5C

Figure 11.2.8 2011 Lab Standard CDN-GS-20A

Figure 12.2.11 2011 Lab Std CDN-GS-7B

Figure 11.2.12 2011 Lab Std CDN-GS-P2

Figure 11.2.13 2011 Lab Std CDN-GS-P3A

Figure 11.2.14 2011 Lab Std CDN-GS-P7B

Figure 11.2.15 2011 Lab Assay Duplicates

Figure 11.2.16 2011 Lab Sample Splits

The graphs show no issues with assay results for blanks and certified standards. There was an error on certificate A11-1553 with standards CDN-GS-3H and CDN-GS-P7B being switched. The assay certificates returned on March 10 and 11 had eight warnings and two failures of seventeen assays of standard CDN-GS-P3A. The laboratory may have been having issues with this standard. After March 11 the laboratory was using standards CDN-GS-P2 and CDN-GS-P3A for the low end standard with no issues.

The authors opinion is that the data supplied by the laboratory is suitable for a resource study.

During the 2011 diamond drill program each hole is entirely split and sampled. Sample lengths are 1 meter. Duplicate samples were systematically selected by the company. The following is a summary of the company QA QC program for the surface diamond drilling program.

- Duplicate sample every 49 samples (including blanks and standards)
- Insert standard every 49 samples (including duplicates and blanks)
- Insert blank every 49 samples (including duplicates and standards)

The following graphs illustrate the results of the company QA QC Program.

Figure 11.2.17 2011 Company Blanks

Figure 11.2.20 2011 Company Low Standards

2011 Company Hi Standard 2011 Company Low Standard 9 3 2 STD of Sample Assays 8.8 + 2 STD of Sample Assays 2.5 8.6 8.4 ı gpt Au **PR** 8.2 -2 STD of Sample Assays Au gpt. 8 1.5 7.8 Au 1 7.6 -2 STD of Sample Assays 7.4 0.5 7.2 0 25 10 20 30 35 40 0 5 15 0 5 10 15 20 25 30 35 40 February - April 2011 February - April 2011

Figure 11.2.20 2011 Company Hi Standards

Inserted blanks indicate no issues with contamination during crushing, grinding, fire assay or measurements.

The certified standards used are unknown. For the Hi Standard the assayed data averaged 8.06 gpt Au with a double standard deviation of 0.40 gpt. The standard deviation is comparable to certified standards where the average Au value is between 6.3 to 7.4 gpt Au. There are two warnings on the low side in holes HY-11-02 and HY-11-04, the remaining standard, duplicates and blanks showed no issue. Laboratory QA /QC showed no issues with the assay certificates. Neither hole had values greater than 1.0 gpt Au therefore would not be used in a resource study.

For the Low Standard the assayed data averaged 2.43 gpt Au with a double standard deviation of 0.32 gpt. One outlier value (.018 gpt Au) was not used for the calculation. The standard deviation is slightly higher compared to certified standards where the average Au value is between 1.9 to 3.5 gpt Au. There are two warnings on the low side in holes HY-11-09 and HY-11-16, the remaining standard, duplicates and blanks showed no issue. For HY-11-09 a blank may have been submitted instead of a standard. The company QA /QC showed no issues with the assay certificates.

There are recorded QA QC procedures and assay certificates available for these surface drill programs. The author considers the assay data from this program suitable for use in a resource study.

11.2.4 West Red Lake 2013-2018, 2021

West Red Lake Gold Mines has recorded QAQC, sample preparation, analyses and security procedures for drilling carried out by RLG at the Property for the period from 2013 to 2021 and have been described in the following report: Technical Report and Resource Estimate on the West Red Lake Project", February 16, 2016.

11.2.4.1 Drill Program Procedures

RLG All drill core from the 2007 to 2021 drill programs was picked up from the drill site and directly delivered to the Company's Mount Jamie Mine core logging facility by RLG core technicians.

The core technicians then measured the drill core and stapled a metal tag to each of the core boxes with the hole number, box number and footage recorded on the tag. The technicians also took measurements from the drill core, including RQD, core recovery, and orientation of any structures, geological contacts and veins.

Ninety-nine percent (99%) of the core had 100% core recovery and RLG has stipulated that no drilling, sampling or recovery factors were encountered that would materially impact the accuracy and reliability of the analytical results. No factors were identified by the authors, which may have resulted in a sample bias.

11.2.4.2 Sampling Protocol

Company geologists logged the drill core, recording the lithological, structural, alteration and mineralogical features observed, as well as selected samples to be analyzed based on the alteration, mineralization and veining observed.

Sections of drill core to be assayed were identified by the geologist during core logging. These sections were split, using a diamond blade rock saw. Half of each sample was sealed in a plastic sample bag along with a sample identification tag. The remaining half of each sample was replaced in the core box as a permanent record. Core is stored on the Mount Jamie Mine property. During the programs conducted during the period 2010 through 2013 all drill holes were assayed from top to bottom with predominately 1.0 m sample lengths, 0.5 m sample lengths were used on the small vein widths.

All drill holes were logged and sampled at the Mount Jamie Mine field camp. Certified gold reference standards, blanks and field duplicates were routinely inserted into the sample stream as part of RLG quality control/quality assurance program. Assaying was completed by either Act Labs or SGS at their Red Lake laboratories which are independent from the Company. Gold analyses were performed by fire assay, however higher grade (>5 g/t Au) samples were analyzed with a gravimetric finish.

The remaining half core was left in the core box and stored at the Company's Mount Jamie Mine core facility for future reference.

RLG maintained their own Quality Assurance and Quality Control Program ("QA/QC Program") for the drilling carried out on the Property. Certified gold reference standards, blanks and field duplicates were routinely inserted into the sample stream as part of RLG quality control/quality assurance program. Assaying was done by either Act Labs or SGS at their laboratories in Red Lake.

It is the authors opinion that the sampling methods, security and analytical procedures used were adequate to have provided sufficient geotechnical and geological information.

11.3 Analytical and Security

Analytical work for RLG was conducted by both ACT Laboratory and SGS Laboratory based out of Red Lake, ON. Both laboratories are independent of RLG and DLV. Gold was analyzed by fire assay – atomic absorption (FA-AA) methods, with a gravimetic assay performed on those samples

assaying greater than 10 grams per tonne Au. Certified gold reference standards, blanks and field duplicates were routinely inserted into the sample stream as part of RLG quality control/quality assurance program.

Total metallics is carried out on samples with visible gold at the request of the geologist in charge. Core samples are crushed and ground completely so that there is no reject. The sample is screened through a 150 mesh screen and the + fraction and – fraction are weighted. A representative 50 g. weight of each fraction is submitted to fire assay for fusion and cupellation followed by gravimetric determination. The total gold content is calculated by weighting the + and – fractions and converting to oz/tonne (as described on SGS fact sheet).

Samples were transported directly to the laboratory in Red Lake, Ontario by RLG core technicians for sample preparation and analyses.

Both labs have developed a Quality Management System ("QMS") designed to ensure the production of consistently reliable data and implemented this at each of its locations. The system covers all laboratory activities and takes into consideration the requirements of ISO standards.

The labs maintain ISO registrations and accreditations, and are registered to ISO/IEC 17043:2010.

The samples were dried and crushed to 70% passing minus ten (-10) mesh. A Jones riffle splitter was used to take a 250-gram sub sample for pulverizing and the reject portion was bagged and stored. After reducing the 250-gram sample to 85% passing -200 mesh, the sample was thoroughly blended and a 50-gram charge was assayed for gold by standard fire assay-ICP finish. Gold values in excess of 10 ppm were re-analyzed by fire assay with gravimetric finish for greater accuracy.

The company QA QC is monitored during the assay import into the Geotic software system. Any anomalies are addressed and if required reruns are requested by the company geologist. The following yearly graphs summarizes the results of the program

Blank RUX1 analyzed for Au (g / 1) All the samples have been used for the statisticatic calculations. Statistics: (N=7; Min.=0.002; Max=0.002; Mean=0.002; S=0)	Standard 2K low analyzed for Au (g / t) All the samples have been used for the statistical calculations. Statistics: (Pct-Silm. 1-39; Max-2-20): Macan 1-586675 AD: 158 at 95% conft; S=0.0611)		
1.HD	119		
100			
489	140		
1889			
- Measured internal at 95% conf	- Measured internal at 95% conf Theoretical internal at 95% conf.		

Basedard BB haratyzed for Au (p / 1) Al the samples harat before the for the statistical calculations. Statistics: (N=5; Mm=5.08; Max=7.42; Mean=6.886 ± 0.6291 at 85% conf.; S=0.5067)	Standard 7E analyzed for Au (g / 1) All the samples have been raied for the stantistical calculations Statistics; v(e): 1 km - 72 (km are 72 km are 72 kg; 2 = 0)		
	Х9		
	· · · · · · · · · · · · · · · · · · ·		
	78		
au			
U	15		
Measured interval at 95% conf Theoretical Interval at 95% conf.	Measured interval at 95% conf Theoretical Interval at 95% conf.		

Standard 7E analyzed for Av (g / f) All the samples have been used for the statistical calculations Statistics: (k+3; Him-7; Max 27 34; Heam-7: 35667 ± 0.446 at 95% conf; 5=0.1795)			
8.14			
7,92			
7.7			
7.48			
7.28			
7.04	•		
	•		
6.82			
1000001			
-			
 — Measured interval at 95% conf. 	 — Theoretical interval at 95% conf. 		

Blank BLK1 analyzed for Au (g / t) Al the samples have been used for the statistical calculations. Statistics: (N=29; Min.~300; Min.~300; H = 00045 at 85% conf.; S=0.0114)	Standard 2K low analyzed for Au (g / t) All the samples have been used for the statistical calculations. Statistics: (N=15, Min = 16, Mines: 11, Mines: 14 81697 = 0.0352, at 55% conf.; S=0.1069)		
	All the samples have been used for the statistical calculations. Statistics: (h=15, Min = 186, Max = 2, 11; Mean=1, 801667 ± 0.0567 ± 0.0567 ± 0.0567) 1		
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		

NI 43- 101 Technical Report - West Red Lake Project

Statistics: (N=	Standard 7E analyzed for Au (g / 1) Althe samples have been used for be satisficial calculations. =15; Min.=6.75; Max.=8.13; Mean=7.7886 ± 0.3085 at 95% conf.; S=0.557)	Standard O-16c analyzed for Au (g / 1) Al the samples have been used for the statistical actuations. Statistics: (Ve4. Min. 2-34, Min.2-34, Min.2-40, Tie. 2014; 2		
0.03				
	•			
4.35 000 000 000 000 000 000 000 000 000 0	6004			
- Measured interval at 95% conf	Theoretical interval at 95% conf.	- Measured interval at 95% conf Theoretical interval at 95% conf.		

	Standard O-044 analyzed for Au (y / 1) Al the samples have been used for the statistical calculations, Statistics: (N-3, Mm = 0.56, Mm x.1.149, Mamm-048033 2 6.0365 at 61% conf.; S=0.257)				
175					
125					
1			•		
0.75					
		•			
0.5					
0.25					
	54-00	8			
	9.13	ές.			
- Measured interval at	- Measured interval at 95% conf.				

NI 43- 101 Technical Report - West Red Lake Project

Standard 2K low analyzed for Au (g / t) All the samples have been used for the statistical calculations. Statistics: (h=22; km=c=36; Km=z=2; 45; km=n=18:3318 cs 10:509 at 95%, conf.; S=0.3405)	Standardr 7E analyzed for Au (g (1) All the samples have been used for the statistical calculations. Statistics: (N=21; Min.=5.14; Max.=8.188; Mean=7.255831 ± 0.329 at 95% conf.; S=0.7228)
Statistics: (N=22, Min.=0.395; Max.=2.195; Mean=1.863318 ± 0.1509 at 89% cont; 8=0.3405)	Statistics: (h=21: Mn=5.14; Max=8.188; Mean=7.236381 ± 0.329 at 05% cont; 5=0.7228) " " " " " " " " " " " " " " "

Binnk BUK3 analyzed for Au (g / f) All the samples have been used for the statistical calculations. Statistics: (N=25; Min.=0.002; Max.=0.056; Mean=0.06644 ± 0.0051 at 95% conf.; S=0.0123)	Standard 2K low analyzed for Au (<i>g</i> / 1) All the samples have been und for the statistical actualizons. Statistics: (N=16; Min =0.025; Max =2.088; Mean=1.712875 ± 0.2556 at 95% conf; S=0.4797)		
Statistics: (N=25; Min.=0.022; Max.=0.056; Mean=0.00644 ± 0.0051 at 35% conf.; S=0.0123) 039 039 039 039 039	Statistics: (N=16; Min = 0.025; Max = 2.066; Mean=1.712875 ± 0.2556 at 95% conf; S=0.4797)		
	Theoretical Informal al SPIs cont.		

Standard 7E nanjzad for Au (g / 1) Af the samples have been used for the statistical calculations. Statistics: (N=14, Min.=6.258, Max.=8.51; Mean=7.605571 ± 0.292 at 95% conf.; S=0.5057)				
* *				
	• • • • • • • • • • • • • • • • • • • •			
7.5				
0.0				
	•			
s				
	a 2			
3				
 Measured interval at 95% conf. 	 Theoretical interval at 95% conf. 			

2021

The company QAQC program is run to industry standards. The historic records do not summarize the analyses of standard or Blank failures. In some cases a failure could be due to a switched standard or a switched sample, either on site or at the laboratory.

It is the author's opinion that the sampling g methods, security, and analytical procedures used were adequate to have provided sufficient geotechnical and geological information for the resource study.

12.0 DATA VERIFICATION

12.1 Data Verification Mt Jamie Mine Property

Mr. J Kita, P.Eng a "qualified person" under the terms of NI-43-101 ("Qualified Person" or "QP") was most recently on the Mt Jamie Mine Property on November 13, 2022. The QP was previously on site February 15 to March 4 2021, November 4 to 15 2020 and in September 2016. The last activity on the Mt Jamie Mine project was diamond drilling in 2017. There has been no material changes on the Mt Jamie properties since the November 13 2022 site visit which is current within the definition under 43-101.

The QP did not encounter any omissions or exceptions during the visit. The exploration work conducted on the West Red Lake Project is of good quality. Company procedures, practices and

QA/QC programs are of industry standard. During the recent and previous visits RLG procedures were verified for core security, logging, sampling, assaying, and QA/QC. Random drill collars, survey points and old workings locations were checked using a hand held GPS unit. Strike and dip measurements were taken of these drill collars. The data was compared to the database with no issues found.

12.1.1 Database

A Gemcom database was supplied by RLG for the West Red Lake Project in January 2021. The database contains 1124 diamond drill holes, and a total of 55,080 assay records. The drill data was filtered to cover only the Mt Jamie area by selecting collars located north of grid 5,657,050 and west of 421,000. This resulted in selecting 657 drill holes containing 18,408 assay records. All standard tables including coded lithology and intercepted zones are maintained within the GEMS Database.

Figure 12.1 Plan View Drill Holes in Database January 2021

12.1.1.1 Drill Collar Locations

The following table summarizes the source of the original drill hole collar locations.

YEAR	COMPANY	DDH Series in Database	Collar Location	Original Collar Locations
1040	Coldon Frontion	GU-1-***	Shaft 1 Underground First Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
1940	Golden Frontier	GU-2-***	Shaft 1 Underground Second Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
		GF-***	SHAFT 2 Surface	From DDH LOG Relative to Pin designated 5000,5000, No elevations
		GU-1-***	Shaft 1 Underground First Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
1941	Golden Frontier	GU-2-***	Shaft 1 Underground Second Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
		GU-3-***	Shaft 1 Underground Third Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
		GU-4-***	Shaft 1 Underground Forth Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
		GF-***	North Vein Surface	From DDH LOG Relative to Pin designated 5000,5000, No elevations
1012	Colden Frontier	GF-1-2**	Shaft 1 Underground First Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
1942	Golden Frontier	GU-2-233	Shaft 1 Underground Second Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
		GU-4-230	Shaft 1 Underground Forth Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
			Shaft 1 Surface	From DDH LOG Relative to Pin designated 5000N,5000E,0 elevation,
1945	Bayview Red Lake	BW-**	Shaft 2 Surface	From DDH LOG Relative to Pin designated 5000N,5000E,0 elevation,
			Other	From DDH LOG Relative to Pin designated 5000N,5000E,0 elevation,
1977	Byng Red Lake	HL-77-01,02,03	South of Shaft 2 north of Dupont Lake	52M01SE00125 Scaled from sketches with respect to claim posts
1978	Byng Red Lake	HL-78-04,05	South of Shaft 2 north of Dupont Lake	52M01SE00125 Scaled from sketches with respect to claim posts
1982	Oneiro-Alfa	Not in Database	Shaft 1 Shaft 2	Derry Michener Booth and Whal December 13 1982
		KF-83-**	Shaft 2 Surface	From DDH LOG Relative to Pin designated 5000N,5000E,0 elevation,
		KF-83-**	Shaft 1 Surface	From DDH LOG Relative to Pin designated 5000N,5000E,0 elevation,
1983	Keeley Frontier	KU-1**	Shaft 1 Underground First Level	From DDH LOG Relative to Pin designated 0N,0E,0 elevation
		KU-2**	Shaft 1 Underground Second Level	From DDH LOG Relative to Pin designated 0N,0E,0 elevation
		KU-40*	Shaft 1 Underground Forth Level	From DDH LOG Relative to Pin designated 0N,0E,0 elevation
1984	Robert Gibson	RG-84-**	South of Shaft 2 north of Dupont Lake	52M01SE0042 Scaled from Sketches Respect to Claim Post
1985	Jamie Frontier	JF-31 - 43	Shaft 1 Surface	From DDH LOG Relative to Pin designated 5000N,5000E,0 elevation,
	Jamie Frontier	JU-110 - 141	Shaft 1 Underground First Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
1005		JU-210 - 240	Shaft 1 Underground Second Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
1985		JU-310 - 330	Shaft 1 Underground Third Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
		JU-410 - 434	Shaft 1 Underground Fourth Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
1985	Robert Cibcon	Not in Database	South of Shaft 2 north of Dupont Lake	E2N401SE0048 Scaled from Skatches Besnest to Claim Best
1986	Robert Gibson	RG-86-**	South of Shaft 2 north of Dupont Lake	SZWOISE0048 Scaled from Sketches Respect to claim Post
1986	Jamie Frontier	JF-44 - 92	Shaft 2 Surface, North Vein, Other	From DDH LOG Relative to Pin designated 5000N,5000E,0 elevation,
	Jamie Frontier	JU-142 - 149	Shaft 1 Underground First Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
1986	Jamie Frontier	JU-241 - 246	Shaft 1 Underground Second Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
	Jamie Frontier	JU-416,435,436	Shaft 1 Underground Fourth Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
1987	Robert Gibson	RG-87-**	South of Shaft 2 north of Dupont Lake	52M01SE0045 Scaled from Sketches Respect to Claim Post
1987	Jamie Frontier	JU-437,438,439	Shaft 1 Underground Fourth Level	From DDH LOG Relative to Pin designated 5000,5000, No elevations
1987	Byron Bay	BB87-1	North West of Shaft 2	52M01SE0151 Scaled from Sketches Respect to Claim Post
1988	Robert Gibson	RG-88-**	South of Shaft 2 north of Dupont Lake	52M01SE0044 Scaled from Sketches Respect to Claim Post (Nad 27 Listed)
1989	Pezgold	P, PSE ,PSW, PW	North Vein and East of North Vein	From DDH LOG Relative to Pin designated 0N, 0E,0 elevation,
2003	Zenda / Vedron	JF-03-**	Shaft 2 Area and west	Drilled on Sections then surveyed by hand held GPS
2007	Hy Lake	HY-07-**	Shaft 2 Area, east west along Strike	Drilled on Sections then surveyed by hand held GPS elevations HL-07-01- 16 off by -25m based on pin elevation HY-07-** no elevations recorded
2011	Hy Lake	HY-11-**	Outside of Shaft 1 Area	Surveyed by Hand Held GPS
2012	Hy Lake	HY-12-**	Property Wide	Surveyed by Hand Held GPS
2017	West Red Lake	MJ-17-**	Shaft 1 Area and North Vein	Surveyed by Hand Held GPS

 Table 12.1
 Source of Original Collar Locations

Between 1940 and 1988 the majority of surface and underground drilling were located on cut grids or marked survey lines. When the hole was completed the collar location was surveyed with respect to a steel pin on surface designated 5000N 5000E 0 elevation (ft). For hole collars located underground, elevations were not recorded and a surveyed azimuth was often included. Underground surveys of drill collars in 1983 used a pin designation of 0N 0E and 0 elevation. This

survey point is a steel pin cemented into bedrock north east of Shaft 1. The following information was used to convert the co-ordinates to UTM (Nad 83, Zone 15);

- Steel pin location 5658222N 419865E 383m Elevation (Nad 83, Zone 15) (Located using hand held GPS Sept 2016)
- Convert collar coordinates to metric by multiplying by 0.3048
- UTM North equals 5656698 plus drill log north co-ordinate (if 5000,5000 pin reference)
- UTM North equals 5658222 plus drill log north co-ordinate (if 0, 0 pin reference)
- UTM East equals 418341 plus log east co-ordinate (if 5000,5000 pin reference)
- UTM East equals 419685 plus log north co-ordinate (if 0, 0 pin reference)
- Elevation equals 383 plus or minus recorded drill collar elevation

The database includes the original co-ordinates (in metric) and any notes of differences. For underground drill holes elevations are estimated. All underground hole locations were confirmed by the author using drill logs and checked, if necessary, with historic underground level plans. There were a few missing co-ordinates and obvious co-ordinate errors, these were corrected by measuring collar locations from historic level plans.

From 1989 to 2017 drill hole locations were planned along cut grid lines or hand held GPS, when completed the collar locations were surveyed with a hand held GPS. All drill hole locations in the filtered database were checked against original logs and company supplied tables. No major errors were found and minor errors were corrected

A visual inspection of the plotted drill hole locations revealed discrepancies of surface collar elevations of closely spaced surface diamond drill holes from the different drill programs. Thirty seven holes had elevation adjustments based on the elevations of nearby holes. The Hy Lake 2007 drill holes HY-07-01 to HY-07-17 required the most significant changes with an elevation increase of 25m required to match later holes. All changes are recorded in the database in the header comments column. Comparing the Shaft 2 underground survey plans to the 1986 Jamie Frontier drilling results indicate a difference of about 33 metres between the plotted and the drill hole intercept of the underground workings. This indicates a possible error with the original shaft collar location and subsequent underground survey, or an error with the drill collar survey. There are no resources defined in this area, however finding and correcting the survey error could define a more continuous mineralized zone. Drill hole intersects of the underground workings in the Shaft 1 area are within 6 metres of the plotted underground workings.

The author checked ten drill hole collars in the vicinity of Shaft 1 using a brunton to measure the collar azimuth and dip, and a Garmin Etrex 20 to measure the collar locations. The measurements did not indicate issues with the collar locations and orientation. Field measurements were within plus or minus 3 metres of the location listed in the database. The author considers the drill hole locations listed within the database reliable for use in a resource study.

12.1.1.2 Drill Hole Down Hole Surveys

Underground drilling between 1940 and 1983 had surveyed collars with dip and azimuth measurements recorded on the drill logs. There was no additional down hole survey information. The average length of hole was 17m with a minimum length of 1.5m to a maximum of 93m. This survey data was verified in the database with the original drill logs by the author. No major errors were found and minor errors were corrected.

Between 1985 and 1987 surface drill were surveyed using a combination of a collar survey with acid tube (dip) and tropari instrument measurements. The acid tests would provide a dip measurement of the hole. This is recorded in the database with the azimuth estimated using the available azimuth information at the start of hole or prorated with the troparia test typically done at the end of hole. This survey data was verified in the database with the original drill logs by the author. No major errors were found and minor errors were corrected.

Surface drilling logs completed between 1988 and 2003 had a single azimuth and multiple dip test per hole recorded. The collar azimuths are either based on alignment to a cut grid or a compass bearing. The dip tests may be acid tests or a troparia type instrument with no recorded azimuth due to poor readings. All the survey data was verified in the database with the original drill logs by the author. No major errors were found and minor errors were corrected.

Surface drilling done in 2007 to 2017 used downhole survey instruments such as the Reflex EZ shot and Flexit. Collar azimuth was measured using a handheld brunton or compass. Fifty percent of the survey data in the database were checked against company supplied files. No major errors were found and any minor errors were corrected.

The author considers the drill hole down hole surveys listed within the database reliable for use in a resource study.

12.1.1.3 Drill Hole Lithology

The lithology table in the filtered database was checked for data integrity using programs built into the Gemcom modelling software. A few overlap errors were noted and these were corrected by the author using available drill logs. The author considers the drill hole down hole surveys listed within the database reliable for use in a resource study.

12.1.1.4 Drill Hole Samples and Assays

Within the filtered database there are 18,408 assays listed. Fifty two percent of these were verified against assay certificates and forty-four percent were checked against assays recorded on drill logs. Duplicate assay data from the lab were added to the database by the author. There were a number of minor corrections, mainly from consistently recording data to three decimal accuracy.

The Assay table in the filtered database was checked for data integrity using programs built into the Gemcom modelling software. There were no overlapping errors reported. The sample intervals were also examined to detect recording errors. A small number of intervals were corrected but anomalous sample lengths still exist in the database. These may by real intervals with the longer lengths due to poor core recovery and the shorter lengths requested by the geologist in charge.

HOLE-ID	FROM	то	LENGTH	SAMPLE #	AU GPT	
BW-05	157.15	161.54	4.39	B5-#8	0.001	
BW-05	163.68	172.52	8.84	B5-#9	0.001	
BW-05	203.30	212.14	8.84	B5-#10	0.001	
BW-05	212.14	215.49	3.35 B5-#11		0.001	
BW-14	35.05	35.09	0.04	G-9	0.001	
BW-32	46.42	48.95	2.53	B32-2	0.001	
BW-33	61.94	64.53	2.92		0.001	
BW-33	121.92	124.21	2.57		0.001	
BW-33	131.86	134.45	2.59		0.001	
BW-34	13.38	16.76	3.38	B34-1	0.001	
GU-4-200	0.00	6.71	6.71		0.001	
GU-4-200	7.01	10.36	3.35		0.001	
GU-4-200	12.50	15.54	3.04		0.001	
HY-07-17	98.66	98.72	0.06	824015	0.004	
HY-07-23	74.30	76.80	2.50	824091	0.008	
KU-110	11.52	11.58	0.06	7355	0.001	
KU-201	5.76	5.85	0.09	493	0.001	
MJ-17-13	9.50	12.00	2.50	8766	0.057	
RW-46-02	214.28	217.78	3.50	3529	0.001	
RW-46-04	45.45	45.54	0.09	3532	0.340	
RW-84-69	20.42	20.49	0.07	2247	0.340	

Table 12.3 Anomalous Sample Lengths

The author considers the drill hole sample intervals and assay values listed within the database reliable for use in a resource study.

12.2 Data Verification Rowan Mine Project

Mr. J Kita, P.Eng a "qualified person" under the terms of NI-43-101 ("Qualified Person" or "QP") was most recently on the Rowan Mine Property on November 13, 2022, after the completion of the Rowan 2021 diamond drill program. The QP was previously on site February 15 to March 4 2021, November 4 to 15 2020 and in September 2016. The last activity on the Mt Jamie Mine project was diamond drilling was in 2017. There has been no material changes on the Rowan and Mt Jamie properties since the November 13 2022 site visit which is current within the definition under 43-101.

The QP did not encounter any omissions or exceptions during the visit. The exploration work conducted on the West Red Lake Project is of good quality. Company procedures, practices and QA/QC programs are of industry standard. During the recent and previous visits RLG procedures were verified for core security, logging, sampling, assaying, and QA/QC. Random drill collars,

survey points and old workings locations were checked using a hand held GPS unit. Strike and dip measurements were taken of these drill collars. The data was compared to the database with no issues found.

In 2016 23 samples of returned diamond drill hole samples were sent for reassay to SGS Laboratories. There are limited higher grade reject material available due to metallics assaying. The screened metallic assay pulverizes a maximum of 1000 gms of reject material, screens this material to a coarse and fine fraction. The coarse fraction is consumed completely in fire assay, and 2 assays of 50 grams each are taken.

"As for the low-grade samples, at lower detection levels of the spectrum, most appear to be within acceptable variances (differentials were up to 5.2%). These samples have such low detection levels that it could be the difference of the equipment used in the lab. The ICAP machinery are far more precise these days, detecting gold down to the third/fourth decimal place whereas previously it was much higher and any samples having less than 0.005 gpt. were considered 'trace' amounts and grouped in a 'undetectable' category. Poor housekeeping or lax equipment cleaning may account for some of these minor variances." (from Archibald 2016).

The following Check Analysis Table displays the samples taken randomly for reproducibility utilizing SGS, a local accredited lab and using the same sample protocols as used on similar samples from the past drilling on the Property.

Orig.Ticket	Drill-Hole	from	to	width	New Ticket	Au-gpt	Au-gpt	Differential 9	% Discrep.
790497	HY-12-17	77.0	78.0	1.0	5159	0.008	0.0025	0.0055	0.55%
790591	HY-12-17	165.0	166.0	1.0	5161	0.033	0.0055	0.0275	2.75%
791612	HY-12-18	19.0	20.0	1.0	5157	0.053	0.001	0.052	5.20%
791623	HY-12-18	29.0	30.0	1.0	5169	0.008	0.002	0.006	0.60%
792121	RLG-13-01	40.0	41.0	1.0	5165	0.010	0.0025	0.0075	0.75%
792815	RLG-13-02	280.0	281.0	1.0	5156	0.010	0.003	0.007	0.70%
793009	RLG-13-02	461.0	462.0	1.0	5152	1.507	0.1695	1.3376	134%
793039	RLG-13-02	489.0	490.0	1.0	5151	2.794	0.3005	2.4935	249%
794106	RLG-13-04	518.0	519.0	1.0	5171	0.021	0.003	0.018	1.80%
1051057	HY-11-58	307	308		5155	trace	0.0025	0.0025	0.25%
1051751	1051751 Missing Loc.ID			5163		0.0015			
1054497	HY-12-08	174.0	175.0	1.0	5167	0.008	0.0015	0.0065	0.65%
1054896	HY-12-13	12.0	13.0	1.0	5162	0.019	0.0025	0.0165	1.65%
1055582	HY-11-59	470.0	471.0	1.0	5170	0.02	0.0025	0.0175	1.75%
792842	RLG 13-02	305	306	1	5153	0.045	0.1485	0.1035	10.35%
796235	RLG 14-15	99	101	2	5154	0.008	0.0025	0.0055	0.55%
793064	RLG 13-02	513	514	1	5158	0.0012	0.003	0.0027	0.27%
794058	RLG 13-04	473	474	1	5160	0.0008	0.0035	0.0027	0.27%
794074	RLG 13-04	488	489	1	5164	0.0008	0.003	0.0022	0.22%
792107	RLG 13-01	27	28	1	5166	0.007	0.008	0.001	0.10%
796207	RLG 14-14	181.6	183.5	1.4	5168	0.005	0.0015	0.0035	0.35%
794149	RLG 13-04	559	560	1	5172	0.0011	0.006	0.0049	0.49%
796216	RLG 14-14	192.8	194.4	1.6	5173	0.037	0.003	0.034	3.40%
Note:	23 Samples picked at random			Check Analyses done by SGS Labs				Jan. 08, 2016	

Table 12. – Check Analysis Table

12.2.1 Database

The data used in this study was supplied by the company in two databases, a Gemcom database containing 1116 diamond drill holes with 54,613 assays and a Geotic database containing 40 diamond drill holes, with 5,250 assays. These were merged and filtered to include holes only in the resource area. The filtered database contained 268 drill holes with 21,177 assays. All standard tables including coded lithology and intercepted zones are maintained within the GEMS Database.

Figure 12.1 Plan View of Filtered Drill Holes in Rowan Database

12.2.1.1 Drill Collar Locations

The following table summarizes the source of the original drill hole collar locations.

YEAR	Company	DDH Series in Database	No. of Collars	Original Collar Co-Ordinance	Comment
1937	Lake Rowan Gold Mines	RWS-37-**	12	Mine Grid	Converted to UTM Jan 4 2002
1937	Lake Rowan Gold Mines	RWU-37-**	1	Mine Grid	Converted to UTM Jan 4 2002
1938	Lake Rowan Gold Mines	RWU-38-**	11	Mine Grid - in database	Converted to UTM Jan 4 2002
1946	Rowan Consolidated Mines	RW-46-**	14	Mine Grid - in database	assumed Converted to UTM Jan 4 2002
1953	Rowan Consolidated Mines	RWU-53-**	38	Mine Grid - in database	assumed Converted to UTM Jan 4 2002
1958	Rowan Consolidated Mines	RW-58-**	7	Mine Grid - in database	assumed Converted to UTM Jan 4 2002
1983	Pipestone Bay Resources	P-83-**	2	Estimated from report	Rough est from cut grid
1984	Goldquest	RW-84-**	14	Mine Grid - in database	assumed Converted to UTM Jan 4 2002
1985	Goldquest	RW-85-**	45	Mine Grid - in database	assumed Converted to UTM Jan 4 2002
1987	Goldquest	RW-87-**	6	Mine Grid - in database	assumed Converted to UTM Jan 4 2002
1989	Chevron	RW-89-**	4		assumed Converted to UTM Jan 4 2002
1990	Chevron	RW-90-**	6		assumed Converted to UTM Jan 4 2002
1993	Goldquest	RW-93-**	3	Mine Grid - in database	assumed Converted to UTM Jan 4 2002
1997	Goldcorp	RW-97-**	2	Mine Grid - in database	assumed Converted to UTM Jan 4 2002
2001	Goldcorp	RW-01-**	4	GPS_UTM NAD 27	assumed Converted to UTM Jan 4 2002
2006	Kings Bay	RW-06-**	8	From 2006	
2007	Hy Lake Gold	HYR-07-**	8	Mine Grid	GPS_UTM NAD 83
2008	Hy Lake Gold	HYR-08-**	3	Mine Grid	GPS_UTM NAD 83
2010	Hy Lake Gold	HY-10-**	4	GPS NAD 83	
2011	Hy Lake Gold	HY-11-**	4	GPS NAD 83	
2013	West Red Lake	RLG-13-**	8	GPS NAD 83	
2014	West Red Lake	RLG-14-**	10	GPS NAD 83	
2015	West Red Lake	RLG-15-**	6	GPS NAD 83	
2016	West Red Lake	RLG-16-**	15	GPS NAD 83	
2017	West Red Lake	RLG-17-**	7	GPS NAD 83	
2018	West Red Lake	RLG-18-**	2	GPS NAD 83	
2021	West Red Lake	RLG-21-**	20	GPS NAD 83	Reflex APD Northfinder collar GPS

Table 12.2 Source of Original Collar Locations

Between 1937 and 1997 the majority of surface and underground drilling were located on cut grids or mine grid systems. From notes in the database Goldcorp converted the mine grid co-ordinates to UTM NAD 83 in 2002. Two survey pins were located close to the Rowan Shaft. No report references or historic plans have been found showing the survey pin co-ordinates in the Mine Grid System. However the underground collar locations correspond well with the underground three dimensional shape. After 2011 drill collars were surveyed using hand held GPS units. The 2021 drill program used a Reflex Northfinder Collar GPS Unit which measures dip and strike of the hole as well as the location.

The author has not been able to locate pre 1980 drill logs to confirm recorded co-ordinates

The author checked visible drill hole collars in the vicinity of the Rowan Shaft using a brunton to measure the collar azimuth and dip, and a Garmin Etrex 20 to measure the collar locations. The measurements did not indicate issues with the collar locations and orientation. Field measurements were within plus or minus 3 metres of the location listed in the database. The author considers the drill hole locations listed within the database reliable for use in a resource study.

12.2.1.2 Drill Hole Down Hole Surveys

The database does not contain complete records detailing the systems used to measure down hole orientation. Based on available assessment records the following has been assumed. The 1938 and 1953 underground and surface drilling assumes a straight line from the collar survey with the odd acid dip test at the end of hole. Surface drilling by Chevron in 1990 may have used a tropari, the azimuth records change with depth. The remainder of the drilling between 1958 and 1997 used acid etching for dip measurements. Azimuths stayed constant with the collar angle.

After 2001 down hole measurements were made using a variety of instruments, sperry sun single shot, ez shot reflex, and flex it equipment.

The author considers the drill hole down hole surveys listed within the database reliable for use in a resource study.

12.2.1.3 Drill Hole Lithology

The lithology table in the filtered database was checked for data integrity using programs built into the Gemcom modelling software. A few overlap errors were noted and these were corrected by the author using available drill logs. The author considers the drill hole down hole surveys listed within the database reliable for use in a resource study.

12.2.1.4 Drill Hole Samples and Assays

Within the filtered database there are 21,459 samples recorded. Where possible the assays were verified against assay certificates.

Forty six percent of these were verified against assay certificates. Duplicate assay data from the lab were added to the database by the author. There were a number of minor corrections, mainly from consistently recording data to three decimal accuracy. However in the 1984 certificates RW-84-61 had assays in the database that were incorrect 2.3 opt Au in the database and 14.0 opt on the certificate, and 2.0 opt Au in the database and 4.9 on the certificate. In the 2013 assay certificates the metallics gold value were halved in the database.

The following table summarizes the checked assay certificates.

٤	Company	DDH Series in Database	Laboratory Certificates	Assay Numbers	Assays Checked	Percent Checked	Comment
1937	Lake Rowan Gold Mines	RWS-37-**	Red Crest / Bell White	151	138	91%	includeds intervals
1937	Lake Rowan Gold Mines	RWU-37-**	Red Crest	19	19	100%	includeds intervals
1938	Lake Rowan Gold Mines	RWU-38-**	Red Crest / Chemex	105	51	49%	RW-46-32 8.16 vs 2.32 opt
1946	Rowan Consolidated Mines	RW-46-**	Dickenson / Bell White	257	252	98%	
1953	Rowan Consolidated Mines	RWU-53-**	Dickenson	884	363	41%	reruns on geo request
1958	Rowan Consolidated Mines	RW-58-**	Dickenson	120	119	99%	RW-58-103 1.93opt vs 1.95 DB
1983	Pipestone Bay Resources	P-83-**	Bourlanmac	299			
1984	Goldquest	RW-84-**	Cochenour P Okanski	943	314		RW-84-61 14 vs 2.3 opt in DB, 4.9 vs 2.0 optin DB
1985	Goldquest	RW-85-**	Cochenour P Okanski	699	697	100%	
1987	Goldquest	RW-87-**		301			
1989	Chevron	RW-89-**		1122			
1990	Chevron	RW-90-**	Chemex	1334			
1993	Goldquest	RW-93-**		116			
1997	Goldcorp	RW-97-**		261			
2001	Goldcorp	RW-01-**	Chemex	219			
2006	Kings Bay	RW-06-**	SGS	434	316	73%	
2007	Hy Lake Gold	HYR-07-**		1050			
2008	Hy Lake Gold	HYR-08-**		796			
2010	Hy Lake Gold	HY-10-**		1508			
2011	Hy Lake Gold	HY-11-**		1633			
2013	West Red Lake	RLG-13-**	Act Labs	3172	2035	64%	RLG-13-03 92.6 vs 46.3 in DB RLG-13-04 7,5,9 vs 3,3,5
2014	West Red Lake	RLG-14-**	Act Labs	395	395	100%	
2015	West Red Lake	RLG-15-**	SGS	368	368	100%	
2016	West Red Lake	RLG-16-**	SGS	1579	1579	100%	
2017	West Red Lake	RLG-17-**	SGS	1272	1120	88%	
2018	West Red Lake	RLG-18-**	SGS	678	136	20%	
2021	West Red Lake	RLG-21-**	SGS	2083	2082	100%	

Table 12.3 Summary Table of Checked Assays

The Assay table in the filtered database was checked for data integrity using programs built into the Gemcom modelling software. There were no overlapping errors reported. The sample intervals were also examined to detect recording errors. A small number of intervals were corrected but anomalous sample lengths still exist in the database. These may by real intervals with the longer lengths due to poor core recovery and the shorter lengths requested by the geologist in charge.

HOLE-ID	FROM	то	LENGTH	SAMPLE #	AU GPT
BW-05	157.15	161.54	4.39	B5-#8	0.001
BW-05	163.68	172.52	8.84	B5-#9	0.001
BW-05	203.30	212.14	8.84	B5-#10	0.001
BW-05	212.14	215.49	3.35	B5-#11	0.001
BW-14	35.05	35.09	0.04	G-9	0.001
BW-32	46.42	48.95	2.53	B32-2	0.001
BW-33	61.94	64.53	2.92		0.001
BW-33	121.92	124.21	2.57		0.001
BW-33	131.86	134.45	2.59		0.001
BW-34	13.38	16.76	3.38	B34-1	0.001
GU-4-200	0.00	6.71	6.71		0.001
GU-4-200	7.01	10.36	3.35		0.001
GU-4-200	12.50	15.54	3.04		0.001
HY-07-17	98.66	98.72	0.06	824015	0.004
HY-07-23	74.30	76.80	2.50	824091	0.008
KU-110	11.52	11.58	0.06	7355	0.001
KU-201	5.76	5.85	0.09	493	0.001
MJ-17-13	9.50	12.00	2.50	8766	0.057
RW-46-02	214.28	217.78	3.50	3529	0.001
RW-46-04	45.45	45.54	0.09	3532	0.340
RW-84-69	20.42	20.49	0.07	2247	0.340

 Table 12.3
 Anomalous Sample Lengths

The author considers the drill hole sample intervals and assay values listed within the database reliable for use in a resource study.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

To date no mineral processing or metallurgical testing has been carried out by RLG on cores obtained by diamond drilling done on the West Red Lake Project. This will be undertaken prior to any decision to exploit the deposits. Historical reports from the Department of Mines indicate gold recovery will be in the 90-95% range. (Department of Mines reports of 1939 and 1954.)

14.0 MINERAL RESOURCE ESTIMATE

14.1 MINERAL RESOURCE ESTIMATE – Mt Jamie

14.1.1 Summary

The Mineral Resource estimate presented is reported in accordance with the Canadian Securities Administrators' National Instrument 43-101 and has been estimated in conformity with the generally accepted Canadian Institute of Mining, Metallurgy and Petroleum (CIM, 2019) CIM Estimation of Mineral Resources & Mineral Reserves Best Practice Guidelines. Mineral Resources

are not Mineral Reserves and do not have demonstrated economic viability. There is no guarantee that all or any part of the Mineral Resource will be converted into a Mineral Reserve. Confidence in the estimate of Inferred Mineral Resources is insufficient to allow the meaningful application of technical and economic parameters or to enable an evaluation of economic viability worthy of public disclosure. Mineral Resources may be affected by further infill and exploration drilling that may result in increases or decreases in subsequent Mineral Resource estimates.

The effective date of this Mineral Resource estimate is October 31, 2022.

The Gemcom database was supplied by the Company. The filtered database contained 654 diamond drill holes, with 18,408 assay records. The database was found to be suitable for use to calculate an inferred resource.

The Mineral Resource Estimate presented here is based on a 3D Block Model interpolated using Inverse Distance squared (ID2) methods to extrapolate grades. The software used for all geostatistical analysis and computation was Dassault Systemes, Geovia GEMS version 6.5.

	Tannas	Grade	Ounces	
	Tonnes	Au gpt Au	Au	
Indicated	35,000	15.2	17,100	
Inferred	116,600	7.5	28,100	

Table 14.1.1 - Inferred Resource with sensitivity to cut-off

Effective date of October 31, 2022

Note:

- Price of gold: \$1600 \$US
- Exchange rate US\$: CDN\$ 0.78
- Domain cutoff grade: 3.8 gpt Au
- Numbers may differ due to rounding
- 1. In this report, the term "Inferred" resource has the meaning ascribed to those termed by the Canadian Institute of Mining, Metallurgy and Petroleum, as the CIM Definition Standards on Mineral Resources and Mineral Reserve adopted by CIM Council May 10, 2014.
- 2. An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.
- 3. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

- 4. An Inferred Mineral Resource is based on limited information and sampling gathered through appropriate sampling techniques from locations such as outcrops, trenches, pits, workings and drill holes. Inferred Mineral Resources must not be included in the economic analysis, production schedules, or estimated mine life in publicly disclosed Pre-Feasibility or Feasibility Studies, or in the Life of Mine plans and cash flow models of developed mines. Inferred Mineral Resources can only be used in economic studies as provided under NI 43-101.
- 5. Mineral resources which are not mineral reserves do not have demonstrated economic viability. The estimate of mineral resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.
- 6. The quantity and grade of reported inferred resources in this estimation are conceptual in nature and there has been insufficient exploration to define these inferred resources as an indicated or measured mineral resource and it is uncertain if further exploration will result in upgrading them to an indicated or measured mineral resource category.

14.1.2 Database

The Gemcom database was supplied by the Company. The filtered database contains 657 diamond drill holes, with 18,408 assay records. All standard tables including coded lithology and intercepted zones are maintained within the GEMS Database. Within the database, channel samples are also recorded. There are a total of 190 channels recorded with lengths typically between three and four feet. Grades are calculated to a minimum width of 1.2 metres. The database was found to be suitable for use to calculate a mineral resource. The following table compares the Gemcom database with the Mt Jamie (Filtered) database. No additional work was done on the filtered database after January 1, 2021.

GEMCOM DATABASE JANUARY 1 2021						
TABLE RECORDS						
DRILL HOLE	ENTIRE	MT JAMIE (FILTERED)				
HEADER	1,124	657				
SURVEY	5,011	1,485				
ASSAY	55,080	18,408				
LITHO_0	12,147	5,041				
LITHO_1	1,964	54				
Channel	ENTIRE	MT JAMIE (FILTERED)				
# of Channels	190	190				

 Table 14.1.2 - Gemcom Database tables

Figure 14.1.1 – Plan View of Drill Holes in Database

14.1.3 Domain Interpretation

Surface topography is estimated using elevation data from a number of sources;

- Historic surveyed drill hole collar elevations
- GPS surveyed drill hole collar elevations
- Provincial and Federal Government Contour maps

Underground excavation solids were provided by the company. These were checked and adjusted to match the surface survey of the shaft and raise and the surveyed underground drill collars. Surveyed points drawn on original mylar level plans were converted from mine grid to UTM and imported into Gems. Comparing the drill collars and surveyed points to the supplied excavation shapes showed minor local discrepancies of between 2 to 3 metres.

Underground mining of two mineralized zones indicated different orientation of the mineralization. Both zones had a strike direction of 110 degrees however the upper zone dipped 79 degrees south and the lower North C Zone had a dip of 75 degrees north. The available drill hole lithology is not consistent enough to allow interpretation of the geology or alteration associated with the mineralization to tie zones together.

The contact between mineralized and non-mineralized material is very sharp and narrow, and a strict assay cut-off is not generally used for domain interpretations. There is no indication of a low grade halo adjacent to the narrow high grade zones. Composite assay intervals were defined and adjusted as the mineralized zones took shape. Initially all drill hole with assay values greater than 1.0 gpt Au were composited to a 1.4m core length. If assay information was not available a grade of 0.0 gpt Au was assumed. In general, the gold value is centered within the composite interval. A total of 424 composites were defined.

Mineralized zones are constructed using polyline strings snapped to the composite end points along sections perpendicular to the strike direction. The polylines are extended twenty five metres or halfway to the next drill hole, whichever is less. The polylines are copied along strike twenty five metres or halfway to the next drill hole, whichever is less. The polylines are then linked using underground information (if available) and assuming a strike direction of about 110 degrees to construct solids used for domains. A total of 141 composites are used to construct thirty-seven separate shapes. In limited cases, the domain solids are projected through holes which have low or no assay values to maintain zone continuity.

The mining model for the deposit is assumed to be underground narrow long hole mining method. Each solid was examined to confirm a minimum true width of 1,2 metres. Drill hole composite lengths were adjusted as required, polylines snapped to the composite end points and the solid regenerated.

The domains are summarized as follows;

- Indicated Resource Domains118, 213 Shaft 1 Area
- Inferred Resource Domains 201,202,210,211 Shaft 1 Area (North Dipping)
- Inferred Resource Domains 101-117, 119-124 Shaft 1 Area (South Dipping)
- Inferred Resource Domains 300-305 North Vein Area

The following figures display the modelled domains on section and in plan.

Figure 14.1.3 Plan North Vein Domains

Figure 14.1.5 Longitudinal Section Indicated Domains

Figure 14.1.6 Section Indicated Domains

Figure 14.1.7 Plan Inferred North Dipping Domains

Figure 14.1.8 Longitudinal Inferred North Dipping Domains

Figure 14.1.9 First Level Domains

Figure 14.1.11 Third Level Domains

Figure 14.1.12 Fourth Level Domains

14.1.4 Block Model Geometry

The following table defines the origin, block size, and orientation of the block model used in the Mt Jamie resource estimate.

MT JAMIE BLOCK MODEL PARAMETERS								
ORIGIN	х ү		z	ROTATION				
	419000	5658500	432	-30				
	COLUMNS	ROWS	LEVELS					
# OF BLOCKS	750	310	150					
SIZE OF BLOCKS (METRES)	2	2	2					

 Table 14.1.3
 Block Model Geometry

14.1.5 Cut Off Grade Estimation

The reporting cutoff grade is based on the following simple financial model. Costs are estimated based on recent technical reports for underground lode gold operations with milling rates between 1000 and 1500 tonnes per day. The gold price is based on a five year average. There are NSR royalties on certain claims held by West Red Lake Gold Mines Inc. The estimated resources are all contained within claims having a royalty of three percent to Jamie Frontier.

Cut	Cut Off Grade Estimation								
ITEM	CDN\$/US\$	соѕт	UNIT						
Mining	US\$	105	\$ per tonne						
Processing	US\$	35	\$ per tonne						
G & A	US\$	30	\$ per tonne						
Gold Price	US\$	1600	\$ per oz						
Mining Recovery		95	percent Au						
Process Recovery		95	percent Au						
Royalty		3	percent Au						
Calculated Cut	Off Grade	3.8	gpt Au						

 Table 14.1.4
 Cut Off Grade Parameters

As metallurgical testing results become available the cut off grade may require adjusting to account for changes in processing costs and gold recovery. It is the authors opinion that the calculated cutoff grade is reasonable for use in a resource calculation.

14.1.6 Bulk Density Estimation

Systematic density measurements are not available. A density of 2.94 gm/cm3 is used for the tonnage calculations. The number is based on typical Archean age volcanic hosted gold deposits and is suitable for use in a resource estimate. It is recommended that systematic density measurements be taken and recorded for use in future resource estimates. Density measurements should include material from the mineralized zones, adjacent waste rock and the different rock types. Density measurements may become available from metallurgical testing.

14.1.7 Assay Compositing

The assay data confirms the very narrow width of the mineralized zones. The contact between mineralized and non-mineralized material is very sharp and narrow, and a strict assay cut-off is not generally used for domain interpretations, dilution is added to the mineralized zone to meet the 1.2m minimum true width. There is no indication of a low grade halo adjacent to the narrow high grade zones. For the resource calculation a single composite from footwall to hanging wall of the domain solid is used. Drill hole orientation with respect to the mineralized zones varies from

perpendicular to an acute angle 15 degrees to the mineralized contacts. For zones of 1.2 metres true width this results in core lengths of 1.2 to 3.8 metres, averaging 1.5 metres of core length.

The following figure illustrates the variability of core length with true width. True widths less than 1.2m can be caused by intervals adjacent to drifts or inflection points of the solid.

Figure 14.1.13 Core Length vs True Width

14.1.8 Outlier Analyses

To minimize any bias introduced by the variable sample lengths with respect to core length and true width, uncapped gold assays are composited into a single length equal to the core length through the domain solid. Capping of gold values is applied to the composite sample. During compositing missing samples or unsampled intervals are assigned a value of 0.00 gpt Au.

Preliminary review of the drill hole assay data showed high gold values ranging between 200 to 864 gpt Au within sample lengths of between 0.2m to 0.6m.

Figure 14.1.14 Sample Au gpt vs Sample Length

To minimize any bias introduced by the variable sample lengths, the samples are composited over a minimum true width of 1.2m across the domain solid. The higher grade gold values now range between 50 to 225 gpt Au within true widths between 1.2m to 1.5m.

Figure 14.1.15 Composite Au gpt vs True Width

The drill hole composite assay data used for the resource report was analyzed within the Gemcom Geostat Module. The Probability Plot showed the possibility of a second high grade population above 50 gpt Au.

Figure 14.1.16 DDH Composite Au gpt Histogram and Normal Distribution Plot

Figure 14.1.17 ALL DDH Composite Au gpt Probability Plot

Seventy percent of these higher grade assays are within the 118 domain. The remaining higher grade values are distributed randomly within the other domains. The 118 domain was analyzed and cut factors determined for the zone, the remainder of the data was used to determine cutting factors for the remainder of the domains.

The Histogram and Normal plot for 118 domain indicate a break in the data at 50 gpt Au. The two populations are taken as 0 to 50 gpt and 50 to 220 gpt Au.

Figure 14.1.19 Domain 18 - 0 to 50 gpt Au DDH Histogram-Cumulative Freq-Norm Dist

Figure 14.1.20 Domain 18 – 50 to 225 gpt Au DDH Histogram-Cumulative Freq-Norm Dist

Based on the formula of mean plus two standard deviations and the distribution of the data, composite assays between 0.0 and 50.0 gpt Au are cut to 40 gpt Au and for composite values between 50.0 and 225.0 gpt Au values are cut to 200. The following table summarizes the statistical changes between uncut and cut data sets for domain 118.

Domain 118 - Diamond Drill Hole Data									
	All DDH	0-50) gpt	50-	All Points				
	Points	Uncut	Cut 40 gpt	Uncut	Cut 200 gpt	Cut			
# of Points	38	31	31	7	7	38			
Mean	32.58	11.03	10.7	128	125	31.77			
Median	8.79	5.86	5.86	129.77	129.77	5.79			
Std Dev	52.01	13.75	12.97	51.82	46.81	50.05			
Variance	2705	189	168	2685	2190	2502			
Co-eff of Variance	1.6	1.25	1.21	0.4	0.16	1.58			
92% of Points LT Au gpt	129.8	34.5	36.5	193.5	182.5	129.8			
95% of Points LT Au gpt	141.6	38.7	38.7	202.5	189	141.6			
97% of Points LT Au gpt	168.8	41	39	209.5	193.5	168.8			
Mean + 2 STD	136.6	39		232					

Table 14.1.5 Domain 118 – DDH Statistical Summary Uncut and Cut Composite Assays

The diamond drill hole assay data for the remainder of the domains is analyzed seperately.

The following figure shows the various statistical plots for the drill hole composite assays minus Domain 118.

Figure 14.1.21 DDH Histogram-Cumulative Freq-Normal Distribution (minus Domain 118)

Based on the formula of mean plus two standard deviations and the distribution of the data, composite assays are cut to 30 gpt Au. The following table summarizes the statistical changes between uncut and cut diamond drill data sets for all domains (minus Domain 118).

ALL Domains (minus 118)- Diamond Drill Hole Composite Assay Data					
	Uncut	Cut 30 gpt			
# of Points	103	103			
Mean	9.93	7.34			
Median	4.63	4.63			
Std Dev	20.75	7.97			
Variance	430	63			
Co-eff of Variance	2.09	1.09			
92% of Points LT Au gpt	21.2	21.2			
95% of Points LT Au gpt	27.6	27.6			
97% of Points LT Au gpt	29.3	29.3			
Mean + 2 STD	51				

Table 14.1.6 DDH Statistical Summary Uncut and Cut Composite Assays (Minus Domain 118)

Underground Drift and sub Drift Channel samples are also used in the resource study. The composite has a minimum width of 1.2 metres, narrower assay widths are diluted at 0.0 Au grade to maintain the width.

Figure 14.1.22 Channel Composite Histogram-Cumulative Freq-Normal Distribution

Based on the formula of mean plus two standard deviations and the distribution of the data, channel composite assays are cut to 50 gpt Au. The following table summarizes the statistical changes between uncut and cut channel data sets for all domains

ALL Domains - Channel Composite Assay Data							
	Uncut	Cut 50 gpt					
# of Points	147	147					
Mean	11.25	8.64					
Median	3.47	3.47					
Std Dev	30.02	12.48					
Variance	901	155					
Co-eff of Variance	2.67	1.44					
92% of Points LT Au gpt	28.4	28.4					
95% of Points LT Au gpt	40.2	40.2					
97% of Points LT Au gpt	49.9	49.9					
Mean + 2 STD	71						

Table 14.1.7 Channel Statistical Summary Uncut and Cut Composite Assays

The following table summarizes the top cuts used in the resource calculations.

Composite Assay Topcuts							
	Uncut Assay Range						
	0-50 50-220 ALL						
DDH - Domain 118	40	200					
DDH - Other Domians			30				
Channel Composites	Composites 50						

Table 14.1.8 Summary of Composite Assay Top Cuts

14.1.9 Grade Interpolation

The software used for all geostatistical analysis and computation was Dassault Systemes, Geovia GEMS version 6.5.

A multiple 'hard' domain model was constructed using previously defined drill hole composite intervals. To avoid domains with a large percent of low grade waste blocks the extent of the domains was also limited to projecting the shape twenty five metres or halfway to the next low grade or waste data point, whichever is less, along strike and dip. Each zone was estimated from composites tagged as being from that specific zone, thus allowing composites selections from its own zone to be used in the calculation. This resulted in a large number of small volume shapes. The limited mineral extents and the low density of data points within each domain limits the usefulness of any kriging method of interpolation. The Mineral Resource Estimate presented here is based on a 3D Block Model interpolated using an Inverse Distance squared (ID²) methods to extrapolate grades.

A two-pass system was used to populate the block model with Au grades. Starting with a 25 metre search ellipse, blocks where populated with Au grades. The next pass with a 50 metre search ellipse then populated any remaining empty blocks within the domain. This process limits the smearing of higher grade values while concentrating the values closer to the data source.

A simple spherical search ellipse was used. The reasoning behind this decision is;

- there is only one composite per hole/channel within each domain therefore no variation of grade across strike
- Composite data points are identified with the domain
- Domain shapes may have inflection points (changes of dip and strike)
- domains have both north and south dips
- This version of GEMS software does not have a dynamic anisotropy feature

The following table outlines the search ellipses used in the calculations.

Table 14.1.9 - Search Ellipse Parameters

ZONE	Search E	Ellipse Ori	entation	First Pass			Second Pass		
	Z	х	Z	x metres	y metres	z metres	x metres	y metres	z metres
ALL	0	0	0	25	25	25	50	50	50

Limits were also placed on the selection of composites used in the calculations. An upper limit is placed on the number of points to be used (by order of minimum to maximum distance). The number of composites to use per hole is irrelevant because of the composite being defined as footwall to hanging wall.

The following table summarizes the controls on composite selection

Table 14.1.10- Composite Selection

ZONE	Minimum # of Composites	Maximum # of Composites	Maximum Composies Per Drill Hole
ALL	1	3	1

14.1.10 Mineral Resource Estimate Classification

Mineral resource classification is based on the available assay data and historical development of the mineralized zones.

All but two domains are classed as Inferred Resources. The inferred designation is a result of the lack of vertical and horizontal continuity of the domain and the limited amount of data points available for domain grade interpolation. For all inferred mineral resources the composite data density is approximately 850 tonnes per data point.

Domains 213 and 118 are classed as Indicated Mineral Resources. Historical underground development and mining of these zones showed continuity between levels and along strike. For all indicated mineral resources the composite data density is approximately 250 tonnes per data point.

14.1.11 Block Model Resource Estimates

The historic underground development was provided by RLG as 3-D shapes. Limited stoping took place between surface and the third level. Level, sub level and raise developments also intersected some of the defined mineralized zones. These areas are cut out of the mineralized shapes. Composite assay information from these areas are included in the resource calculation.

	T	Grade	Ounces		
	Tonnes	Au gpt Au	Au		
Indicated	35,000	15.2	17,100		
Inferred	116,600	7.5	28,100		

Table 14.1.11- Mineral Resource Summ	ary
--------------------------------------	-----

Effective date of October 31, 2022

- 1. In this report, the term "Inferred" resource has the meaning ascribed to those termed by the Canadian Institute of Mining, Metallurgy and Petroleum, as the CIM Definition Standards on Mineral Resources and Mineral Reserve adopted by CIM Council May 10, 2014.
- 2. An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.
- 3. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4. An Inferred Mineral Resource is based on limited information and sampling gathered through appropriate sampling techniques from locations such as outcrops, trenches, pits, workings and drill holes. Inferred Mineral Resources must not be included in the economic analysis, production schedules, or estimated mine life in publicly disclosed Pre-Feasibility or Feasibility Studies, or in the Life of Mine plans and cash flow models of developed mines. Inferred Mineral Resources can only be used in economic studies as provided under NI 43-101.
- 5. Mineral resources which are not mineral reserves do not have demonstrated economic viability. The estimate of mineral resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.
- 6. The quantity and grade of reported inferred resources in this estimation are conceptual in nature and there has been insufficient exploration to define these inferred resources as an indicated or measured mineral

Price of gold1600 US\$ per ounceCut off Grade3.8 gpt Au

resource and it is uncertain if further exploration will result in upgrading them to an indicated or measured mineral resource category.

Indicated Resource											
ZONE	Tonnes	Comment									
118	26,650	17.15	South Dipping								
213	8,350	9.15	North Dipping								
Total	35,000	15.24									

Table 14.1.12- Indicated Mineral Resource by Zone

Price of gold 1600 US\$ per ounce Cut off Grade 3.8 gpt Au

Tables	14.1.13-	Inferred	Mineral	Resource	by Zone
1 40100	1 111110		1,111,61,61	10000100	0, 20110

Inferred Resource - Shaft 1 Area North Dipping										
ZONE	Tonnes	Comment								
201	1,789	3.91								
210	3,374	9.35								
211	3,579	12.30								
Total	8,742	9.44								

Price of gold1600 US\$ per ounceCut off Grade3.8 gpt Au

Inferred Resource - North Vein											
ZONE	ZONE Tonnes gpt Au Comment										
300	2,943	4.83									
301	9,354	4.63									
302	3,886	4.23									
303	8,496	5.07									
304	8,930	9.04									
305	5,564	4.23									
Total	39,173	5.65									

NI 43- 101 Technical Report - West Red Lake Project

Inferred Resource - Shaft 1 Area South Dipping										
ZONE	Tonnes	gpt Au	Comment							
101	6,306	4.36								
102	3,511	15.76								
103	689	4.70								
104	2,261	4.18	plunging west							
105	1,312	11.59								
106	2,118	6.86	channel composites							
107	2,215	4.01								
108	1,102	19.48								
109	960	30.00								
110	1,639	12.50								
111	842	12.00								
112	298	4.37								
113	6,867	6.86								
114	2,968	17.02								
115	1,881	22.24	along strike to 118							
116	1,734	4.64								
117	4,806	7.26								
119	3,750	4.54								
120	2,338	5.09								
121	5,764	6.81								
122	1,440	19.12								
124	13,898	5.13								
Total	68,699	8.23								

Price of gold 1600 US\$ per ounce Cut off Grade 3.8 gpt Au

							Intersected			AU					
70115	STRIKE	DEPTH	WIDTH		D: (DUD)	# of	by	AU ID2	AU ID2	Nearest	AU NN	o	Volume	-	0014151170
ZONE	м	М	м	Azimuth	ыр (кнк)	Composites	Underground	gpt	Cut gpt	Neighbou	CUT gpt	Classification	m3	Ionnes	COMMENTS
							Workings			r					
101	62	32	1.2	116	69	20	Y	4.36	4.36	4.25	4.25	INF	2145	6306	
102	30	34	1.2	117	75	3		15.77	15.76	21.21	21.21	INF	1195	3511	
103	13.3	16	1.2	99	84	1		4.7	4.7	4.7	4.7	INF	234	689	
104	28	27	1.2	110	87	5	Y	4.18	4.18	5.14	5.14	INF	770	2261	plunging west
105	30	15	1.2	114	77	3		11.59	11.59	12.62	12.62	INF	446	1312	
106	27	25	1.2	123	83	30	Y	14.72	6.86	19.96	9.98	INF	722	2118	based on channel samples
107	14	45	1.3	88	79	1		4.01	4.01	4.01	4.01	INF	753	2215	
108	22	13	1.2	100	87	1		19.48	19.48	19.48	19.48	INF	375	1102	
109	16	17	1.2	98	79	1		78.89	30	78.89	30	INF	326	960	
110	9	50	1.2	121	87	2		12.5	12.5	12.56	12.56	INF	558	1639	
111	20	13	1.2	120	79	1		12	12	12	12	INF	287	842	
112	6	13	1.2	119	86	1		4.37	4.37	4.37	4.37	INF	101	298	
113	77	25	1.2	98	78	7		6.86	6.86	7.06	7.06	INF	2336	6867	
114	28	30	1.2	99	79	3	Y	17.02	17.02	18.98	19.98	INF	1010	2968	
115	23	18	1.2	111	76	1		22.24	22.24	22.24	22.24	INF	640	1881	in line with mined area
116	13	34	1.2	95	84	2		4.64	4.64	4.74	4.74	INF	590	1734	
117	42	40		117	87	12	Y	7.26	7.26	8.34	8.34	INF	1635	4806	
118	116	46	1.3			104	Y	17.82	17.15	14.48	13.98	IND	9070	26665	
119	50	25	1.2	136	89	5		4.54	4.54	4.54	4.54	INF	1276	3750	
120	15	21	1.7	136	73	6	Y	5.09	5.09	4.05	4.05	INF	795	2338	
121	26	40	1.35	315	89	1		6.81	6.81	6.81	6.81	INF	1961	5764	on strike with N vein stope
122	10	40	1.3	105	88	1		19.12	19.12	19.12	19.12	INF	491	1440	
123	10	42	1.2	122	76	1		3.60	3.60	3.60	3.60	NA	571	1678	Below Cut off
124	38	40	3.2	315	88	1		5.13	5.13	5.13	5.13	INF	4727	13898	
201	21	23	1.2	287	76	3		3.91	3.91	3.88	3.88	INF	608	1789	
202	14	11	1.2	299	85	2		3.39	3.39	2.39	2.39	NA	173	509	Below Cut off
210	35	28	1.2	291	77	1		9.35	9.35	9.35	9.35	INF	1148	3374	
211	57	21.0	1.2	269	70	4		50.24	12.3	55.65	13.37	INF	1218	3579	EAST of north stoping
213	39	14.3	1.2	284	74	4	Y	31.57	16.91	41.94	20.55	IND	221	648	stoped from 350 level
213	25		1.2	281	68	36	Y	11.96	11.36	11.48	10.89	IND	1125	3308	dev area 350 - 475 sills
213	42	34	1.2	297	62	3		6.34	6.34	8.21	8.21	IND	1497	4401	
300	50	19	1.2	117	87	1		4.83	4.83	4.83	4.83	INF	1001	2943	
301	50	42	1.2	117	88	1		4.63	4.63	4.63	4.63	INF	3182	9354	TO SURFACE
302	22	50	1.2	110	76	1		4.23	4.23	4.23	4.23	INF	1322	3886	
303	37	50	1.7	110	79	1		5.07	5.07	5.07	5.07	INF	2890	8496	
304	98	34	1.2	121	89	8		9.04	9.04	8.97	8.97	INF	3037	8930	
305	35	43	1.3	320	81	5		4.23	4.23	4.72	4.72	INF	1892	5564	

Table 14.1.14- Mineral Resource Details by Zone

14.1.11.1 Zone Details

The following figures visually illustrate the grade distributions within zones.

Figures 14.1.24 Inferred Resource Domains Shaft 1 Area-North Dipping

Figures 14.1.25 Inferred Resource Domains Shaft 1 Area-South Dipping

14.1.12 Resource Block Model Validation

The block model was validated using several industry standard methods including:

- Visual validation comparing block estimates to composite gold values on sections and plans
- Verifying volumes of all mineral domains.
- Global comparison of domain gold grade to composite gold grades.
- Comparison of ID2 and NN estimations
- Evaluation of the effect of grade capping.

The block model was examined on plan, section and 3D views. Blocks were queried to confirm domain identification within the selected shapes. Composite domain identification was confirmed. The boundary conditions between blocks and domain solids were checked. Block grade values were visually compared to composite point gold values within the domains. The block gold grades did not show significant smoothing of values.

The domain shapes were dynamically viewed to confirm the extents and limits based on surrounding information. The domain volumes were confirmed by querying each shape using a GEMS built in programming feature.

The nature of the deposit, (multiple narrow gold veins gold with limited strike length) resulted in domains being defined by hard boundaries. This interpretation did not allow for a reliable variometric analyses of the composite gold data.

14.1.12.1 Validation of Global and Local Grade Estimates

The initial evaluation compared the weighted resource gold grade (cut) with the arithmetic average(cut) of datapoints used in the calculation. All defined domains are used, including two domains with grades below the 3.8 Au gpt cut-off. This showed a moderate negative bias of the Local Grade Estimate with respect to the Global Grade. The bias was investigated, and the issue is with the domains defined by one data point. These sixteen mineral domains have tonnages ranging between 298 to 13,900 averaging 3676 tonnes per datapoint. With these domains and data points removed there is a slight negative bias of the Local Grade Estimate with respect to the Global Grade. The QP considers the Local Grade Estimates reasonable given that the negative bias of the single point domains are in the inferred category of mineralization. The following table summarizes the results of the comparison.

Domains	Local		Global		Local / Global	Tonnes per
Domains	Au gpt Au	Tonnes	Au gpt Au	Points	%	Data Point
2 or more Points	10.56	95,003	11.52	266	92%	357
1 Point	6.94	58,820	9.99	16	69%	3676
All Domains	9.17	153,823	11.44	282	80%	545

 Table 14.1.15
 Summary of Global and Local Grade Estimate

14.1.12.2 Comparison of ID2 and NN Estimations

Local validation within domains using a Nearest Neighbor Model was applied to groups of Indicated and Inferred blocks. Both models use the same search criteria. The comparison with the ID2 resource model is good, showing some local variation of the block data and some evidence of smoothing. The domains are tightly constrained with all contained blocks included in the grade-tonnage summary. There is no change of tonnage amounts between the models. The grade results

compare well, indicating no major issues with the Resource Model. The following table compares the Inverse Distance Squared Model to the Nearest Neighbor Model.

	ID2 N	/lodel	NN Model		
All Domains	Au gpt	Au gpt Cut	Au gpt	Au gpt Cut	
	10.66	9.17	10.59	8.99	

Table 14.1.16 Summary of NN and ID2 Block Models

14.1.12.3 Mineral Resource and Mining Reconciliation

Historical reports indicate 2,000 to 3,000 tons of mineral were mined with a portion going to a 100 TPD mill on site and the remainder stockpiled. The detailed data was not available to allow for a reconciliation between the block model estimate and the recovered gold. The domain shapes did not include developed or mined volumes. Additional work is required to locate the historic mining and milling information to verify the stoping areas, and to confirm the tonnes and grade milled and stockpiled.

14.1.13 Resource Block Model Sensitivity

14.1.13.1 Gold Assay Outlier Capping

The following table compares the cut to uncut grade calculations. The same domains, search ellipses, and numbers of composites used are the same in both cases. Only the composite gold grade changed, from the uncut to the cut value.

The difference in gold content of the domains is due to changes in block grades. The same domain shapes are used. For Indicated Resource there is a change of -5% in gold content between the uncut and cut gold grade models. For Inferred Resource there is a change of -18% in gold content between the uncut and cut gold grade models. The reason for the difference of change between the Indicated and Inferred Models is due to both the density of composite data (Indicated has ten times the composite data density of Inferred) and the treatment of outlier gold values in Domain 118. The higher grade values within the Inferred mineral domains have a larger sphere of influence due to the absence of nearby data.

Within the Inferred Resource Model only 10% of the domains are affected by the outlier capping. They represent 6% of the inferred tonnes and have a grade change of -75% (43 gpt Au uncut, 13 gpt Au cut).

The following five tables summarizes and details the cut-uncut comparisons within the mineral domains.

NI 43- 101 Technical Report - West Red Lake Project

Category	Tonnes	gpt Au Cut	Contained Au Oz	gpt Au	Contained Au Oz	% Change
Indicated	35,000	15.2	17,161	16.1	18,153	-5%
Inferred	116,600	7.5	28,210	9.2	34,604	-18%

Tables 14.1.17 Sensitivity of Cut-Uncut Composites on Mineral Domains

Indicated Resource									
ZONE	Tonnes gpt Au Cut Contained Au Oz gpt Au Contained Au Oz % Cha					% Change			
118	26,650	17.15	14,743	17.82	15,319	-4%			
213	8,350	9.15	2,465	10.52	2,834	-13%			
Total	35,000	15.24	17,208	16.08	18,153	-5%			

	Inferred Resource - Shaft 1 Area South Dipping								
ZONE	Tonnes gpt Au Cut Contained Au Oz gpt Au Contained Au Oz % Cha								
101	6,306	4.36	887	4.36	887	0%			
102	3,511	15.76	1,785	15.77	1,786	0%			
103	689	4.70	104	4.70	104	0%			
104	2,261	4.18	305	4.18	305	0%			
105	1,312	11.59	491	11.59	491	0%			
106	2,118	6.86	469	14.72	1,006	-53%			
107	2,215	4.01	287	4.01	287	0%			
108	1,102	19.48	692	19.48	692	0%			
109	960	30.00	929	78.89	2,443	-62%			
110	1,639	12.50	661	12.50	661	0%			
111	842	12.00	326	12.00	326	0%			
112	298	4.37	42	4.37	42	0%			
113	6,867	6.86	1,520	6.86	1,520	0%			
114	2,968	17.02	1,630	17.02	1,630	0%			
115	1,881	22.24	1,349	22.24	1,349	0%			
116	1,734	4.64	260	4.64	260	0%			
117	4,806	7.26	1,126	7.26	1,126	0%			
119	3,750	4.54	549	4.54	549	0%			
120	2,338	5.09	384	5.09	384	0%			
121	5,764	6.81	1,266	6.81	1,266	0%			
122	1,440	19.12	888	19.12	888	0%			
124	13,898	5.13	2,300	5.13	2,300	0%			
Total	68,699	8.23	18,248	9.16	20,300	-10%			

Inferred Resource - Shaft 1 Area North Dipping									
ZONE	Tonnes gpt Au Cut Contained Au Oz gpt Au Contained Au Oz % Change								
201	1,789	3.91	226	3.91	226	0%			
210	3,374	9.35	1,018	9.35	1,018	0%			
211	3,579	12.30	1,420	50.24	5,800	-76%			
Total	8,742	9.44	2,663	24.98	7,044	-62%			

	Inferred Resource - North Vein									
ZONE	Tonnes	gpt Au Cut	Contained Au Oz	gpt Au	Contained Au Oz	% Change				
300	2,943	4.83	459	4.83	459	0%				
301	9,354	4.63	1,397	4.63	1,397	0%				
302	3,886	4.23	530	4.23	530	0%				
303	8,496	5.07	1,390	5.07	1,390	0%				
304	8,930	9.04	2,604	9.04	2,604	0%				
305	5,564	4.23	759	4.23	759	0%				
Total	39,173	5.65	7,139	5.65	7,139	0%				

14.1.13.2 Changes to Block Cut Off Grade

Changes to the parameters used to determine the block cutoff grade will result in a change to the block cutoff grade. The following table and graphs include both Indicated and Inferred Material and two domains which are below the current cut off grade of 3.80 gpt. Only blocks within the domain shapes are used. The continuity of the revised blocks due to changes is not considered for this evaluation.

The table shows a 12% loss of tonnes and 2% loss of contained gold by removing blocks grading less than 3 gpt Au. There is a significant loss of tonnes and contained gold if blocks greater than 5 gpt Au are considered.

Blocks >	Tonnage	Grade	Contained	Percent of Total	Percent of Total
gpt Au	T x 1000	Au gpt	oz Au	Tonnes	Contained Gold
5.0	94	12.7	38,610	61%	86%
4.0	123	10.8	42,750	80%	95%
3.0	135	10.1	44,140	88%	98%
2.0	141	9.8	44,630	92%	99%
1.0	147	9.5	44,900	95%	100%
0.5	149	9.3	44,960	97%	100%
0.25	151	9.3	44,980	98%	100%
0.0	154	9.1	44,990	100%	100%
Total	154	9.1	44,990		

Table 14.1.18 Gold Sensitivity to Block Grade Cut Off

The graph shows a moderately curved between tonnes and grade as block cut-off grades change. Block cut off grades within the domains show a linear relationship between grade increasing and tonnes decreasing between zero and three gram per tonne Block cut off grades. Using cut off grades greater than 3 gpt results in a rapid decrease of tonnes with a corresponding increase of grade with the gold content dropping to 86% of the total Domain contained gold.

Figure 14.1.23 – Grade Tonnage Graph

14.1.14 Recommendations

14.1.14.1 Diamond Drilling

The Mt Jamie Property has been well drilled near surface with exploration and follow up drilling. Detailed drilling has covered a vertical depth of;

- 170m in the Shaft 1 Area
- 100m in the North Vein Area
- 70m in the shaft 2 Area

The potential of the property remains at depth. A 3200 m surface drill program of 8 holes is recommended to follow up on near surface mineralization to a vertical depth between 200 to 300 metres. There are four areas proposed for follow up drilling.

Additional drilling could be planned on the East Vein area but is considered a lower priority at this time.

As part of the program it is recommended that;

- Rock Density measurements be taken adjacent to mineralization and by rock type
- Maximum assay sample length 1 metre, minimum 0.25 metres
- Oriented core measurements (minimum 50 metres before and after target zone)
- Include Laboratory duplicate assays in the database

The following tables and figure outline the proposed drill program.

IIOI E ID	CC	OLLAR LOCATI	ON	LENGTH	Towat
HULE-ID	EASTING	NORTHING	ELEVATION	Metres	Talget
MTJ-001	419710	5658055	392	425	#1 Shaft South Dipping Mineralization
MTJ-002	419895	5657960	381	425	#1 Shaft South Dipping Mineralization
MTJ-003	419900	5658410	387	375	#1 Shaft North Dipping Mineralization
MTJ-004	419990	5658385	385	375	#1 Shaft North Dipping Mineralization
MTJ-005	419980	5658260	372	350	North Vein
MTJ-006	419815	5658355	374	350	North Vein
MTJ-007	419170	5658535	360	450	#2 Shaft Area
MTJ-008	419275	5658495	360	450	#2 Shaft Area
Total		8 Drill Holes		3200	

Table 14.1.19 Proposed Drill Hole Collar Details

Table 14.1.20 Drill Target Details

TADCET ID	TA	RGET LOCATIO	Torgot	
TARGET ID	EASTING	NORTHING	ELEVATION	Target
MTJ-001	419778	5658173	100	#1 Shaft South Dipping Mineralization
MTJ-002	419958	5658071	100	#1 Shaft South Dipping Mineralization
MTJ-003	419840	5658305	100	#1 Shaft North Dipping Mineralization
MTJ-004	419926	5658268	100	#1 Shaft North Dipping Mineralization
MTJ-005	420035	5658365	100	North Vein
MTJ-006	419867	5658458	100	North Vein
MTJ-007	419245	5658705	100	#2 Shaft Area
MTJ-008	419350	5658670	100	#2 Shaft Area

Figure 14.1.24 Plan View Mt Jamie Diamond Drilling

14.1.14.2 Geology – Interpretation

The multiple drill programs over the past 80 years has resulted in a variety of lithology titles for similarly described core. For a period of time in the 1980's the lithology was often summarized as meta-sedimentary because of a report of thin section analysis. The current lithology listed within the database does not allow for a consistent lithology interpretation.

It is recommended that geological information from more recent and future drill programs be used to interpret the historical lithology to begin making a more robust lithology model. Historically some importance was given to a breccia unit within the mine lithology. The underground geology maps should be used to help define various lithology contacts and project the contacts along strike and dip. Keely Frontier produced a series of sections in 1983 which could be used as a guide.

14.1.14.3 Data Preservation

Information held by Hi-Lake was in storage within an office in 2014. The data included;

- original surface and underground diamond drill logs on paper
- Copies of some drill logs.
- Mylar underground maps including, geology, assay and survey
- Mylar surface maps showing geology and sampling

The diamond drill logs were organized and filed in steel cabinets and the mylar maps rolled and stored in travel tubes or in an upright stand. The paper logs included most of the holes recorded in the database for Mt Jamie.

Approximately 25% of the drill logs are preserved as pdf documents, and 75% of the underground plans and sections. Some of these electronic files are missing pages and are of poor quality.

The Hi-Lake information is now in storage within an isolated container, mixed with other unrelated office furniture and files. It is strongly recommended that the Hi-Lake-Mt Jamie files be recovered from this location and electronically copied. The original files should be stored in a climate controlled environment for future reference.

14.1.14.4 Shaft 2 Area

Mineral Resources have not been defined in this area. Diamond Drilling did return significant gold values, and underground development took place. There are summaries of surface sampling and underground sampling shown on longitudinal sections. Combining all this information shows very poor continuity. There is an obvious location issue with the data in this area. Survey points measured from underground plans, and drill holes surveyed using the same grid shoe a location discrepancy. This is based on the recorded intersections of the surface drilling with the underground development. The information from Keely Frontier and the earlier work appears to be spatially correct. The later drilling by Jamie Frontier appears to be displaced 50 metres to the south east of the Keely Frontier data.

It is recommended that the #2 Shaft Collar be surveyed and compared to the historic records and to locate and survey the historic drill collars and confirm their location. It is possible that the Jamie Frontier drilling not known if there is a historic survey error in the area, when it occurred and what holes are affected. Once the drill collar locations are confirmed the mineralization continuity may improve.

Figure 14.1.26 Plan View #2 Shaft Area Location Discrepency

14.1.14.5 Collar Elevations and Topography

Visual inspection of the collar locations shows discrepancies of elevation data between the surveyed collars of the earlier programs and the more recent GPS collar surveys of the more recent drilling. The surveyed collars are transformed to UTM co-ordinates based on the 5000-5000 pin located by the #1 Shaft. There may be original survey errors in the records due to calculation errors during the original survey or a different point of reference was used. For tholes located using a hand held GPS errors may be introduced by using incorrect zones (NAD 83 Zone 15 is currently used) or using different spheroid setting.

Ideally a new survey of all the drill collars is recommended, however many of the steel collars may have been removed or buried beneath debris. Any collars that are found should have their locations surveyed

It is recommended that an accurate topographical survey be conducted in the areas of the shafts and mineralize zones. The topography could be used to identify suspect drill collar locations and elevations and resolve the elevation issues between the various diamond drill programs. The elevation survey could also be used for future infrastructure planning.

14.2 MINERAL RESOURCE ESTIMATE – Rowan Project

14.2.1 Summary

The data used in this study was supplied by the company in two databases, a Gemcom database containing 1116 diamond drill holes with 54,613 assays and a Geotic database containing 40 diamond drill holes, with 5,250 assays. These were merged and filtered to include holes only in the resource area. The filtered database contained 268 drill holes with 21,177 assays. The drill hole database was found to be suitable for use to calculate an inferred resource.

The author is not aware of any environmental, permitting, legal title, taxation, socio-economic, marketing, political or other factors with which the mineral resource estimates could be materially affected.

The Mineral Resource Estimate presented here is based on a 3D Block Model interpolated using Inverse Distance squared (ID^2) methods to extrapolate grades. The software used for all geostatistical analysis and computation was Dassault Systemes, Geovia GEMS version 6.5.

Inferred Resource							
Tonnes Grade g/t Au Contained Oz A							
Total	2,790,700	9.2	827,462				

Table 14.2.1 - Inferred Resource with sensitivity to cut-off

Effective date of October 31, 2022

Note:

- Price of gold: \$1600 \$US
- Block cutoff grade: 3.8 gpt Au
- Numbers may differ due to rounding
- 7. In this report, the term "Inferred" resource has the meaning ascribed to those termed by the Canadian Institute of Mining, Metallurgy and Petroleum, as the CIM Definition Standards on Mineral Resources and Mineral Reserve adopted by CIM Council May 10, 2014.
- 8. An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.
- 9. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

- 10. An Inferred Mineral Resource is based on limited information and sampling gathered through appropriate sampling techniques from locations such as outcrops, trenches, pits, workings and drill holes. Inferred Mineral Resources must not be included in the economic analysis, production schedules, or estimated mine life in publicly disclosed Pre-Feasibility or Feasibility Studies, or in the Life of Mine plans and cash flow models of developed mines. Inferred Mineral Resources can only be used in economic studies as provided under NI 43-101.
- 11. Mineral resources which are not mineral reserves do not have demonstrated economic viability. The estimate of mineral resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.
- 12. The quantity and grade of reported inferred resources in this estimation are conceptual in nature and there has been insufficient exploration to define these inferred resources as an indicated or measured mineral resource and it is uncertain if further exploration will result in upgrading them to an indicated or measured mineral resource category.

14.2.2 Database

-

The data used in this study was supplied by the company in two databases, a Gemcom database containing 1116 diamond drill holes with 54,613 assays and a Geotic database containing 40 diamond drill holes, with 5,250 assays. These were merged and filtered to include holes only in the resource area. The filtered database contained 268 drill holes with 21,177 assays. All standard tables including coded lithology and intercepted zones are maintained within the GEMS Database.

TABLE	GEMS RECORDS	GEOTIC RECORDS	FILTERED RECORDS
HEADER	1,117	157	269
SURVEY	4,997	3,836	2,041
ASSAY	54,613	19,724	21,459
ASSAY QA/QC		876	
LITHO_0	12,361	4,299	4,590
LITHO_1	1,864		
LITHO_2	105		
GEOCHEM	641		
GEOTECH	742	2,745	
COMPWORK	WORKING FOLDER		WORKING FOLDER
COMPZONE	WORKING FOLDER		WORKING FOLDER

The following table summarizes the data sources used in the Rowan Gemcom database.

The database was checked for data integrity using programs built into the Gemcom modelling software. A small number of hole length errors and assay overlaps were identified and corrected.

Table 14.2.2	- Data Source Table	

Figure 14.2.1 – Plan View of Drill Holes in GEMS Database

Figure 14.2.2 – Plan View of Filtered Drill Holes in Rowan Database

When comparing sample lengths, there are a number of anomalous long lengths which may be due to data entry or transfer errors. The listed holes are from within the resource study area. Diamond drill-hole RWS-37-08 has a 12.25 metre interval grading 0.0gpt Au adjacent to a defined vein. The remaining drill hole intervals are outside of any of the defined veins and have grades ranging in value from 0.0 to 0.01gpt Au. Any corrections to these interval lengths will not affect the resource calculation.

Drill Hole	From	То	Length	
ID	m	m	m	Au gpt
RLG-16-36	125.00	130.80	5.80	0.080
RW-87-126	24.12	29.00	4.88	0.020
RW-87-126	121.43	127.30	5.87	0.000
RW-87-133	167.06	171.20	4.14	0.000
RW-87-136	15.17	21.43	6.26	0.010
RW-87-136	48.30	56.21	7.91	0.000
RW-87-136	90.18	95.94	5.76	0.000
RW-87-137	189.18	197.72	8.54	0.000
RW-87-137	199.62	205.54	5.92	0.000
RWS-37-08	81.08	93.33	12.25	0.000

 Table 14.2.3
 - Anomalous Drill Hole Lengths

The drill hole data contained in the database is suitable for use to calculate an inferred resource.

14.2.3 Methodology

The Mineral Resource Estimate presented here is based on a 3D Block Model interpolated using an Inverse Distance squared (ID^2) methods to extrapolate grades. The software used for all geostatistical analysis and computation was Dassault Systemes, Geovia GEMS version 6.5.

14.2.4 Block Model Geometry

The following table outlines the orientation and size of the block model used in this Technical Report.

14010 11121	Bleen hieuer		
BLOCK MO	DEL DETAILS		
Origin	x=421100	y=5657550	z=400
ROTATION	0 degrees		
	SIZE Metres	NUMBER of CELLS	
Columns	5	405	
Rows	2	345	
Level	5	150	

Table 14.2.4 - Block Model Parametres

14.2.5 Interpretation of Mineralized Zones

Sections showing the diamond drill holes and interpretations were provided by the Company. These showed interpretations based on an east west strike direction with a steep northerly dip. These interpretations are based on historic mining information and surface exposures of the mineralized zones. There has been no alteration or lithology identified as unique to the mineralization to confirm zone definitions

The mineralized zones consist of seven sub-parallel and relatively narrow veins across an area of 200 to 800m, and strike length of up to 1800m. The mining model for the deposit is assumed to be underground narrow long hole mining method.

The composite intervals are determined from the database and not from the solid pierce points.

The assay data was extracted to an excel spreadsheet. All assay intervals having a grade greater then 1.0 gpt Au were composited to a 1.5 m core length. Composite lengths were extended or combined into one composite if the lower grade interval and waste interval had a grade greater then 1.0 gpt This was reimported into the compzone table and the composite grade calculated using a grade of 0.001 for any missing assay values. The composite zones were tagged as 999.

The domain shapes were re-interpreted on sections and 3D examinations spaced between 20 to 50 meters apart using the composites. The strings used to construct the solids were snapped to the composites. To maintain a minimum 1.3m true width a number of composites had to be lengthened. Once satisfied with the interpretation the ZoneNo field in the COMPZONE table were changed to the vein designation. To maintain zone continuity, the vein solids are projected through holes which have low or no assay values. For these holes the composite intervals are defined by the intersection with the solids. Once completed the grades were recalculated to account for changes and additions.

The following two diagrams display the modelled vein systems on section and in plan.

Figure 14.2.2 - Section 42200E

Parameters Used for Cut Off Grade Estimation

14.2.6 Reporting Grade

Table 14.2.4

CUT OF	CUT OFF GRADE ESTIMATE									
ITEM	CDN\$/US\$	COST	UNIT							
Mining Cost	US\$	105	\$ PER TONNE							
Process Cost	US\$	35	\$ PER TONNE							
G & A	US\$	30	\$ PER TONNE							
Gold Price	US /Oz	1600	\$ PER OZ							
Mining Recovery		95	Percent Au							
Processs Recovery		95	Percent Au							
Royalty		3	Percent Au							
Calculated C	Cut Off Grade	e 3.8 g	pt Au							

The reporting cutoff grade is based on the following simple financial model.

1 - Gold Recovery estimated, based on typical lode gold deposit

2 - Gold Price Based on 5 year average

The reporting cutoff grade is adequate for use in an inferred resource calculation. To upgrade the resource classification will require:

- metallurgical studies to provide recovery information
- milling costs specific to the area
- more detailed mining model, and associated costs

14.2.7 Rock Mineral Density

Systematic density measurements are not available. A density of 2.94 gm/cm3 is used for the tonnage calculations. The number is based on typical Archean age volcanic hosted gold deposits and is suitable for use in an inferred resource estimate. It is recommended that systematic density measurements be taken and recorded for use in future resource estimates.

14.2.8 Compositing

The zone interval in each drill hole was composited as one interval between the two intercept points. Resulting in one composite-point per drill hole intercept. This method was decided due to a number of factors.

The narrow width of the mineralization does not allow the contemplation of adjusting the hanging wall or foot wall contact to optimize grade. It is a defined hard domain boundary. All material within the shape will be considered for extraction.

The variability of the sampling length over the various drilling programs ranged between 0.1m to 1.5m going through the mineralized zones. Combine this with the various drill / mineralized intercept angles and the true width of the sample with respect to the mineralization is highly variable. A single composite represents the true width of the mineralization.

The Gems Software does not have a method to easily eliminate orphans at the end of compositing. Solutions are either to delete the partial interval or include. If it that interval is high or low grade it will have an equal influence as the full composite.

Table 5 lists the statistical information for each zone with the average composite interval length for each zone. It illustrates the narrow nature of the zones with a few wider intervals. Some of these zones could be narrowed to a higher grade.

Zone	# of Composites	Min m	Max m	Mean	Median	STD	C of V	90%	92%	95%	99%
100Z	24	1.4	8.8	2.7	2.0	1.85	0.69	2.1	2.2	2.4	2.6
101A	55	1.5	17.0	2.7	2.0	2.29	0.83	2.2	2.2	2.3	2.6
102B	81	1.5	9.0	2.4	2.0	1.32	0.54	2.1	2.1	2.2	2.4
103C	96	1.5	12.7	2.9	2.0	2.25	0.78	2.2	2.3	2.5	2.8
104D	61	1.5	9.7	2.2	1.7	1.40	0.63	1.8	1.9	2.0	2.2
105E	4	1.5	2.3	1.8	1.8	0.34	0.20				
106F	15	1.4	3.1	2.1	2.0	0.46	0.23				

Table 14.2.5 – Composite Length Statistics

Composits GT .01 gpt

NI 43- 101 Technical Report - West Red Lake Project

Drill Hole	Zono	From	То	Length	Au ant	
ID	Lunc	m	m	m	Augpi	
RLG-13-03	101	185.0	202.0	17.0	6.8	
RW-97-155	103	30.5	43.2	12.7	2.0	
RW-84-57	103	244.5	255.3	10.8	6.3	
RWS-37-05	104	53.7	63.4	9.7	1.6	
RW-84-65	102	128.3	137.3	9.0	1.2	
HYR-07-03	103	259.0	268.0	9.0	13.5	
RW-84-60	100	87.6	96.5	8.8	9.3	

Table 14.2.6 – Composite Grades (Lengths GT 8.0m)

14.2.9 High Grade Capping

In order to minimize any bias introduced variable sample lengths, uncapped gold assays are composited into a single composite across the width of the zone. Capping of gold values is applied to the composite sample. During compositing missing samples or unsampled intervals are assigned a value of 0.001 gpt Au. There are no tails or orphans in this compositing process.

To minimize the bias of low grade areas only composite values greater than 0.01 gpt Au are used in the statistics. The following table summarizes the composite gold statistics by zone prior to applying the top cut.

COMIC	composite stratistics (that to repring topear) composits of or get										
Zone	# composits	Min	Max	Mean	Median	STD	C of V	90%	92%	95%	99%
100Z	24	0.01	26.51	4.30	1.80	5.60	1.30	2.70	2.90	3.30	4.00
101A	55	0.01	225.00	12.90	2.10	35.70	2.80	3.90	4.00	5.20	11.00
102B	81	0.01	60.42	6.80	2.40	10.90	1.61	3.60	4.00	4.80	6.10
103C	96	0.01	40.80	4.20	2.00	6.40	1.52	2.40	2.60	3.00	3.80
104D	61	0.01	77.90	3.20	1.30	10.00	3.09	1.40	1.50	1.70	2.50
105E	4	0.01	4.10	2.30	2.20	1.40	0.61				
106F	15	0.01	6.15	1.70	1.10	1.80	1.07	2.34	2.34	7.74	7.74

 Table 14.2.7 - Composite gold statistics by Zone

 COMPOSITE STATISTICS (Prior to Applying TopCut)

 Composite GT.01 gpt

To establish the topcut the following table and histogram charts for each zone where considered.

Zone	5 * Mean	Mean + 2STD	92%	95%	99%	Visual	Used
100Z	21	16	9	12	22	20	20
101A	65	84	99	125	200	100	80
102B	34	29	20	33	45	35	30
103C	21	17	5	10	26	19	20
104D	16	23	5	10	10	30	20
105E	12	5				none	none
106F	9	5				none	none

Table 14.2.8 - Composite gold statistics by Zone

Composits GT.01 gpt

The following table shows the statistical changes using the selected topcut

Zone	# composits	Cut Composites	Min	Max	Mean	Median	STD	C of V	90%	92%	95%	99%
100Z	24	1	0.01	20.00	4.03	1.80	4.60	1.400	2.70	2.90	3.20	3.80
101A	55	3	0.01	80.00	9.3	2.10	18.90	2.030	3.60	4.00	5.20	8.30
102B	81	6	0.01	30.00	6.00	2.40	8.10	1.350	3.60	4.00	4.50	5.60
103C	96	4	0.01	20.00	3.9	2.00	5.10	1.320	2.30	2.50	3.00	3.70
104D	61	1	0.01	20.00	2.30	1.30	3.30	1.460	1.40	1.50	1.70	2.20
105E	4	0	0.01	4.10	2.30	2.20	1.40	0.61				
106F	15	0	0.01	6.15	1.70	1.10	1.80	1.07				

Table 14.2.9 - Composite gold Top Cut Estimates by Zone

Composits GT .01 gpt

The following seven figures are the histogram plots of the uncut composite assays.

Figures 14.2.5 - Histogram plots of the uncut composite values

14.2.10 Grade Interpolation

The grade was estimated using Inverse Distance Squared (ID2) method available within the GEMS software.

A multiple 'hard' domain model was constructed using the three dimensional shapes of the zones.

Each zone was estimated from composites tagged as being from that specific zone, thus allowing composites selections from its own zone to be used in the calculation.

A three pass system was used to populate the block model with Au grades. Starting with a smaller search ellipse, blocks where populated with Au grades. The next pass with a larger search ellipse then populated empty blocks and the same process was used in the third and final pass. This process limits the smearing of higher grade values while concentrating the values closer to the data source.

The search ellipses were oriented with an easterly plunge based on earlier work.

Figures 14.2.6 – High Grade Trends (From Archibald 2016)

The following table outlines the search ellipses used in the calculations.

ZONE	Search	Ellipse Ori	ientation		First Pass		Second Pass			Third Pass			
ZONE	Z	х	Z	x metres	y metres	z metres	x metres	y metres	z metres	x metres	y metres	z metres	
100Z	20	84	5	30	60	30	60	120	60	90	200	90	
101A	5	81	110	30	60	30	60	120	60	100	200	100	
102B	2	84	5	30	60	30	60	120	60	100	200	100	
103C	5	84	5	30	60	30	60	120	60	100	200	100	
104D	9	81	4	30	60	30	60	120	60	100	200	100	
105E	2	80	0	30	60	30	60	120	60	100	200	100	
106F	8	83	5	30	60	30	60	120	60	100	200	100	

 Table 14.2.9 - Search Ellipse Parameters

Limits were also placed on the selection of composites used in the calculations. An upper limit is placed on the number of points to be used (by order of minimum to maximum distance). Each composite represents a drill hole intercept. A minimum of one hole and maximum of 3 holes within the search ellipse are used to interpolate the block grade.

14.2.11 Resource Estimates

The final resource estimation is presented in the following tables. The mining method assumed is narrow long hole sublevel mining. The author assumes the Mt Jamie resources would be used to supplement mill feed from another source.

The historic underground development was provided by RLG as 3-D shapes. Limited mining took place from the first level in two areas, one east of the shaft and one west of the shaft. From the current zone definitions, the mining took place on zone 104D. Shape 104D was clipped to remove the mined areas.

The inferred resource information and the available mining information do not allow a reasonable reconciliation to be performed. The stope widths, which may be underestimated, are shown as 1 metre. Additional work is required to locate the historic mining information to verify the stoping areas, and to confirm the tonnes and grade milled.

NI 43- 101 Technical Report - West Red Lake Project

Inferred Resource								
	Tonnes	Grade g/t Au	Contained Oz Au					
Total	2,790,700	9.2	827,462					

Table 14.2.10 -Final Resource Estimate

Effective date of October 31, 2022

Note:

- Price of gold: \$1600 \$US
- Exchange rate US\$: CDN\$ 0.78
- Domain cutoff grade: 3.8 gpt Au
- Numbers may differ due to rounding
- 1 In this report, the term "Inferred" resource has the meaning ascribed to those termed by the Canadian Institute of Mining, Metallurgy and Petroleum, as the CIM Definition Standards on Mineral Resources and Mineral Reserve adopted by CIM Council May 10, 2014.
- 2 An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.
- 3 An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 An Inferred Mineral Resource is based on limited information and sampling gathered through appropriate sampling techniques from locations such as outcrops, trenches, pits, workings and drill holes. Inferred Mineral Resources must not be included in the economic analysis, production schedules, or estimated mine life in publicly disclosed Pre-Feasibility or Feasibility Studies, or in the Life of Mine plans and cash flow models of developed mines. Inferred Mineral Resources can only be used in economic studies as provided under NI 43-101.
- 5 Mineral resources which are not mineral reserves do not have demonstrated economic viability. The estimate of mineral resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.
- 6 The quantity and grade of reported inferred resources in this estimation are conceptual in nature and there has been insufficient exploration to define these inferred resources as an indicated or measured mineral resource and it is uncertain if further exploration will result in upgrading them to an indicated or measured mineral resource category.

14.2.11.1 Zone Details

The following table summarizes the mineral resource by zone

Zone	Inferred	Grade						
	Tonnes	Au gpt						
100Z	188,900	6.5						
101A	652,200	14.8						
102B	762,800	9.2						
103C	667,300	6.8						
104D	345,700	7.2						
105E	74,300	4.1						
106F	99,500	5.1						
Total	2,790,700	9.2						
NB: Price of G	NB: Price of Gold 1600 \$US							
Block cut	offGrade 3.8	3 gpt Au						

Table 14.2.11 - Final Resource Estimate by Zone

The following figures summarize the grade distributions within each zone

Figures 14.2.7 - Grade Distributions within each Zone

14.2.12 Resource Block Model Validation

The block model was validated using several industry standard methods including:

- Visual validation comparing block estimates to composite gold values on sections and plans
- Verifying volumes of all mineral domains.
- Global comparison of domain gold grade to composite gold grades.
- Comparison of ID2 and NN estimations
- Evaluation of the effect of grade capping.

The block model was examined on plan, section and 3D views. Blocks were queried to confirm domain identification within the selected shapes. Composite domain identification was confirmed. The boundary conditions between blocks and domain solids were checked. Block grade values were visually compared to composite point gold values within the domains. The block gold grades did not show significant smoothing of values.

The domain shapes were dynamically viewed to confirm the extents and limits based on surrounding information. The domain volumes were confirmed by querying each shape using a GEMS built in programming feature.

The nature of the deposit, (multiple narrow gold veins gold with limited strike length) resulted in domains being defined by hard boundaries. This interpretation did not allow for a reliable variometric analyses of the composite gold data.

14.2.12.1 Validation of Global and Local Grade Estimates

The initial evaluation compared the weighted resource gold grade (cut) with the arithmetic average(cut) of datapoints used in the calculation. This showed a moderate negative bias of the Local Grade Estimate with respect to the Global Grade. The higher grade composites are typically constrained by other nearby composite points. Lower grade composites are less constrained on the periphery of the zone. This results in fewer higher grade blocks being interpolated verses the lower grade points. The QP considers the Local Grade Estimates reasonable given the distribution of composite points.

14.2.12.2 Mineral Resource and Mining Reconciliation

Historical reports indicate limited mining took place from the first level. The available historic records are not adequate to conduct a comparison with the resource model.

14.2.13 Sensitivity Analysis

14.2.13.1 Changes to Block Cut Off Grade

Changes to the parameters used to determine the block cutoff grade will result in a change to the block cutoff grade. The following table and graph illustrate the effects of such changes. Both

show a relatively moderate sloped graph. A 20% change in block cutoff grade results in a 10 % change in contained gold. The graph shows a change of slope at 1.5 gpt block cut off grade. Above 1.5 gpt the overall grade changes more rapidly then below 1.5 gpt Au.

Changes to block cut off grade centred on 3.8 gpt Au show a much smaller change to the contained gold with respect to the change of cut off grade.

Blocks Greater Then	Tonnage	Au	Contained	Change of Block	Change of	
Au gpt	(x 1000)	Au gpt	Au oz	Cut Off Grade %	Contained Gold %	
5	1829.6	11.8	692934	32%	-16%	
3.8	2790.6	9.2	829010	0	0	
3	3637.3	7.9	921501	-21%	11%	
2	4711.9	6.6	1005899	-47%	21%	
1	8135.0	4.4	1158649	-74%	40%	

 Table 14.2.12
 Gold Sensitivity to Block Grade Cut Off

Figure 14.2.8 – Grade Tonnage Graph

14.2.13.2 Cutting Factors

The following table compares the cut to uncut grade calculations. The same search ellipses and numbers of composites used are the same in both cases. Only the composite gold grade changed, from the uncut to the cut value.

The difference in gold content is primarily due to an increase in the block grades rather than adding more blocks to the 3.8 gpt Au block model. Overall the uncut model has an increase in tonnage of less then 1%, and an increase of 20% to grade. Combining these factors increases the gold content of the uncut model by 20%.

	Cut Composites			Uncut Composites			% Change Cut to Uncut		
Zone	Tonnes	Grade	Contained Au	Tonnes	Grade	Contained	Tonnes	Grade	Contained
		Au g/t	OZ		Au g/t	Au oz		Au g/t	Au oz
100Z	188,900	6.49	39,416	189,500	6.75	41,125	0%	4%	4%
101A	652,200	14.84	311,176	652,300	21.39	448,590	0%	44%	44%
102B	762,800	9.22	226,117	763,000	9.56	234,517	0%	4%	4%
103C	667,300	6.84	146,747	669,000	7.28	156,584	0%	6%	7%
104D	345,700	7.17	79,691	346,600	7.67	85,470	0%	7%	7%
105E	74,300	4.1	9,794	74,300	4.1	9,794	0%	0%	0%
106F	99,500	5.1	16,315	99,500	5.1	16,315	0%	0%	0%
Total	2,790,700	9.24	829,255	2,794,200	11.05	992,395	0%	20%	20%

Table 14.2.13 Uncut – Cut Gold Sensitivity

14.2.14 Recommendations

Blocks GT 3.8 gpt Au

The higher grade mineralized zones have an east-west strike, dipping steeply north with a steep east plunge. The minerals veins are stacked indicating a possible secondary structural control to the mineralized veins. Future drill programs should take this into account.

A ten hole, 3000 meter drill program is recommended to confirm historic higher grade zones and confirm the continuity of the zones. The systematic measurement of rock densities is strongly recommended. In the future it would be ideal to have data to support density values for rock type and adjacent to the mineralization.

Consideration should be given to gathering material for milling and metallurgical testing. This could be either reject from core sampling, drill core (twinned, wedged or split core) or surface test pitting. It is important the material represent the anticipated mill grade.

Currently the drilling information is captured and store using Geotic Software. Typically this data is hen transferred to Gemcom. It is strongly recommended that a central database be established outside of the two systems being used.

15.0 MINERAL RESERVE ESTIMATES

This section is not applicable to the current Technical Report.

16.0 MINING METHODS

This section is not applicable to the current Technical Report.

17.0 RECOVERY METHODS

This section is not applicable to the current Technical Report.

18.0 PROJECT INFRASTRUCTURE

This section is not applicable to the current Technical Report.

19.0 MARKET STUDIES AND CONTRACTS

This section is not applicable to the current Technical Report.

20.0 ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT

This section is not applicable to the current Technical Report.

21.0 CAPITAL AND OPERATING COSTS

This section is not applicable to the current Technical Report.

22.0 ECONOMIC ANALYSIS

This section is not applicable to the current Technical Report.

23.0 ADJACENT PROPERTIES

The QP has been unable to verify the information presented below and is unable to validate that all the information is up to date. The information is not necessarily indicative of the mineralization on the West Red Lake Project property.

Newman Todd Property owned by Trillium Gold Mines Inc.

Located to the south and adjoining the West Red Lake Property is the Newman Todd property. The Newman Todd Structure is located on the property and is the southern extension of the NT Zone which crosses from the West Red Lake Gold Property across the property boundary and trends southwest for a distance 2.2 km over the Newman Todd property, 100% owned by Trillium Gold Mines Inc.

Total drilling by Trillium Gold on the Newman Todd property as of March 31, 2022 stands at 20,180 m since Trillium began work on the property in 2011. In 2003 Redstar Gold began exploring the Newman Todd property with mapping, prospecting and geophysics which was followed by exploration diamond drilling during 2005-2010, after which Trillium Gold Mines

optioned the property from Redstar Gold and continued exploration work up to the present time in 2022. Previous to 2003, the property was sporadically explored by numerous companies since the late 1920s.

Results disclosed from Newman Todd Structure drilling indicate gold values within a quartz breccia unit along the contact of a quartz-diorite/quartz porphyry intrusive.

The original Newman Todd property consisting of 13 patented claims covers an area of approximately 198 hectares where the Newman Todd Structure is situated. In 2020 Trillium Gold acquired 6 additional patented claims located adjacent to the west of the original Newman Todd claims, known as the Rivard property having an area of 90 hectares, giving the total area of 288 hectares for the Newman Todd property. Source: Trillium Gold disclosure documentation from news releases, corporate website and Sedar filings.

Prior work on the Rivard portion of the Property was conducted by various operators over the past number of years. Rubicon Minerals performed the most significant of the exploration activity with a drilling program conducted between the winter of 2002 and fall of 2003. Fifteen holes were drilled, ranging in depth between 155m and 630m. Most were drilled to a depth of 300 - 400m. Almost all were drilled due South, at a dip of 45 degrees, and sampled thoroughly. Source: Ontario Ministry of Northern Development and Mines files.

24.0 OTHER RELEVANT DATA AND INFORMATION

The authors are not aware of any other relevant data or information that is not included in the Technical Report.

25.0 INTERPRETATION AND CONCLUSIONS

Conclusion

Exploration work conducted on the Rowan Mine property to date has led to a focus on a portion of strike length located in the Rowan Mine area and at the NT Zone where several gold zones exhibited characteristics which appear to merit additional work.

A 1.8km portion of the strike length of the east-west trending Pipestone Bay-St Paul Deformation Zone in the Rowan Mine area contains several gold zones which have been drilled down to a depth of approximately 300m to 350m deep.

A 1 km portion of the northeast trending NT Zone contains several gold zones which have been drilled down to a depth of approximately 200m deep.

A significant occurrence of gold mineralization has been delineated at the West Red Lake Project - Rowan Mine property by diamond drilling throughout the long history of exploration and underground production.

Risks and Uncertainties

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.

Mineral resources which are not mineral reserves do not have demonstrated economic viability. The estimate of mineral resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.

The quantity and grade of reported inferred resources in this estimation are conceptual in nature and there has been insufficient exploration to define these inferred resources as an indicated or measured mineral resource and it is uncertain if further exploration will result in upgrading them to an indicated or measured mineral resource category.

There are no known environmental, permitting, legal, title, taxation, socio-economic, marketing, political or other relevant factors, other than as discussed in this Technical Report that would affect the Property or the information disclosed in this Technical Report.

26.0 RECOMMENDATIONS

The authors have the following recommendation for the West Red Lake Project:

- 1. Upgrade select areas of the Rowan Mine area inferred resource to an indicated resource.
- 2. Diamond drilling to expand the Rowan Mine mineral deposit to depth, down dip down plunge.
- 3. Expand the NT Zone along strike further to the northeast.
- 4. Bulk density determinations should be routinely carried out in mineralization and waste in any future drilling.
- 5. Mineral resources can be increased by investigating gold mineralization located on the periphery of the current geological model. This would improve resource classification by upgrading areas not classified to Inferred and Inferred blocks to Indicated. Additional drilling would provide valuable information on the continuity of grade and allow better local orientation of the search ellipse.
- 6. Further advance the project by initiating engineering, metallurgical, geotechnical environmental, permitting, and other studies aimed at evaluating the potential viability of an underground mine and completing a Preliminary Economic Assessment (PEA).
26.1 Proposed Budget

A two phase Budget is proposed for the Property. All the proposed exploration is intended for the Rowan Mine property.

Phase 1:

As per the recommendations the following initial budget is recommended for the project.

Activity	Units	\$/Unit	Cost
Diamond Drilling	6,000m	\$150	\$900,000
Geological		\$15	90,000
Assaying		\$15	90,000
Logistics		\$40	240,000
Total			1,320,000
Admin - 15%			\$198,000
Total			\$1,518,000

The above budget could satisfy some of the above recommendations. Additional exploration would be contingent upon the initial program.

Costs include all expenses associated with drilling, including geological, assaying, and logistical costs.

Phase 2:

Contingent upon the results of Phase 1, i.e.; converting a portion of the inferred resource to indicated.

Activity	Units	\$/Unit	Cost	
PEA			\$80,000	
Admin - 15%			\$12000	
Total			\$92,000	

27.0 REFERENCES

Atkinson, B.T., 1996. OFR 5958 Report of Activities 1996, Resident Geologist.

Archibald, J., November 2006. Diamond Drilling Report on the Rowan Lake Property for Kings Bay Corporation Ltd.

Archibald, J., Bevan, P. A., Kita, J., February 16, 2016. Technical Report and Resources Estimate on the West Red Lake Project, Todd, Hammell Lake, and Fairlie Townships, Red Lake Mining Division, Ontario (NTS 52M/1); Effective Date: February 16, 2016.

Bevan, P.A., 2010. "Technical Report on the Pipestone Bay Gold Deposit - July 2008.

Bowes-Lyon, Lea Marie, February 2002. Report on the Geological Mapping on part of the Rowan Property during fall 2001 Season, Todd Township.

Cashin, P., Shannon, K., 1998. Chevron Minerals Ltd. Report of Work May- December 1989. Goldquest Project. Red Lake, Ontario.

Chastko, Louis C., November 1969. Report on Geological, Geochemical and Geophysical Investigations on Claims KRL 63669 and KRL 636700. Todd Township.

Chastko, L. C. August 1975. Report on the Geophysical Investigation of the "Rugged" Claim Group, Todd Township. (See Company files under 52 M/1).

Coles, Pam P.Geo November 2020. Abitibi Geophysics Unmanned Aerial Magnetic Survey AeroVision Logistics and Interpretation Report for West Red Lake Gold Mines Inc,Rowan Lake Joint Venture Project

Department of Mines and Resources - Mines and Geology Branch, October 5, 1939. Gold Ore from the Lake Rowan Gold Mines, Limited, Red Lake, Ontario

Department of Mines and Technical Surveys - Division of Mineral Dressing and Process Metallurgy, February 3, 1954. Rowan Consolidated Mines Samples A&B Interim Report of Investigations No. MD 3012.

Durrant, A.R., July 5, 1985. Goldquest Report on Bulldozer Stripping, Washing and Sampling at Martin Bay (Rowan Group) Todd Township.

ERMES (Earth Resources and Minerals Exploration Ontario Web Site - Ministry of Northern Development, Mines and Forestry), Various Years.

Fraser, D.C., 1983. Dickenson Mines Limited Red Lake Project, Ontario.

Fumerton, S., November 16, 1990. Review of Gold Mineralization at the Rowan Mine and Work by Chevron Minerals Ltd 1990.

Ferguson, S.A., Groen, H.A., and Hayes, R., 1971, ODM, MRC 13.

Gill, J., E., June 21, 1937. Lake Rowan Gold Mines Progress Report.

Godfrey, F. A., March 1987. Dickenson Mines Limited. Evaluation of the Rowan Project.

Guy, Kenneth, February 2015. West Red Lake Gold Mines Inc., Summary Report on a Diamond Drilling Programme, 2013, Rowan Property.

Guy, Kenneth, July 2020. West Red Lake Gold Mines Inc., Summary Report on a Diamond Drilling Programme, 2019, Rowan Property.

Guy, Kenneth, February 2009. Hy Lake Gold Inc. Summary Report on Exploration and a Diamond Drilling Programme, 2007, 2008, Rowan Property.

Hallet, E.O.B., November 1953. Rowan Consolidated Mines Limited Final Progress Report.

Hicks, H. S., After March 1941. Diamond Drilling Report on West Red Lake Gold Mines-McKenzie Option. Goldcorp company file.

Holbrooke, G.L., July 9, 1948. Lake Rowan (1945) Mines Limited Report on Geology and Development.

Holbrooke, G. L., February 1952. Rugged Red Lake Mines Ltd. Report on Base Metal Possibilities. Goldcorp file.

Horwood, H.C. 1940, ODM Vol. XLIX, part II, p.121.

Hunt, D. S., August 9, 2001. Report on Diamond Drilling Program Rowan Property (Martin Bay).

Hunt, D. S., Seyler, R., December 1, 2001. Report on Diamond Drilling Program Rowan Property-QP Zone, Todd and Fairlie Townships and Hammell Lake Area, Red Lake Mining Division, Ontario.

Mason-Apps, G., April 26, 2002. Executive Summary Rowan Lake Project, Todd and Fairlie Townships (Goldcorp internal document).

Mason-Apps, G., October 6, 2002. Internal Goldcorp memo to R. McEwan regarding "Rowan Mine Reserves".

Mason-Apps, G and Dalby, A, March 2010. Executive Summary Rowan Lake Project, Todd and Fairlie Townships (Hy Lake Internal document).

May, W., T., July 16, 1934. Report on the Rowan Hall Claims Golden Arm, Red Lake District, Ontario.

McConnell, J., July 22, 1986. Strathcona Mineral Services. Review of Development Options and Associated Costs to Bring the Rowan Project into Production for Goldquest Exploration Inc.

Ministry of Northern Development, Mines and Forestry (MNDMF) Ontario, 2010. Ontario CLAIMaps service (http://www.mndm.gov.on.ca/MINES/LANDS/claimap3/Default_e.asp?). Copyright Queen's Printer for Ontario.

Patrie, Dan, May 4, 2002. Report on the Inducted Polarization Gradient Survey Rowan/ Martin Bay Property, Todd township, Ontario for Goldcorp.

Peden, K. D., December 16, 1983. Goldquest Exploration Inc. Report on the Geological Survey of Rowan Group, Todd Township, NTS 52M/1.

Peden, K.D., December 7, 1983. Goldquest Report on the Radiometric Survey of the Rowan Group.

Peden, K.D., February 21, 1984. Goldquest Report on Preliminary Geochemical Sampling on Rowan Project, 1983.

Peden, K.D., September 24, 1984. Goldquest Report on the Diamond Drilling Program Rowan Group, 1984 Todd Township.

Peden, K.D, Durrant, A. R., November 8, 1984. Goldquest Exploration Inc. Summary of the Rowan Project Test Mining May-November, 1984, Todd Township.

Peden, K.D., January 15, 1985. Goldquest report on the Geophysical Survey over Part of the Rowan Group (Strilchuck Block).

Peden, K.D., January 25, 1985. Goldquest Report on Lithogeochemical Survey over Selected Parts of the Rowan Group. Todd Township.

Peden, K.D., April 29, 1985. Goldquest Exploration Inc. Ore Reserve Summary for Rowan Project.

Peden, K.D., June 21, 1985. Goldquest Report on the Diamond Drilling Program Rowan Group, 1985 Todd Township.

Peden, K.D., March 3, 1988. Goldquest Summary Report of the 1987 Field Program on the Rowan Group.

Pirie, J. (1981): Regional setting of gold deposits in the Red Lake area, Northwestern Ontario; p.71-93 in Genesis of Archean, volcanic-hosted gold deposits, Symposium held at the University of Waterloo, March 7, 1980, Ontario Geological Survey, Miscellaneous Paper 96, 201p.

Riley, R.A., 1971: 1971 b: Todd Township, District of Kenora; Ontario Department of Mines, Map 2046, scale 1 inch to 1000 feet. Geology 1971.

Riley, R.A. (1975): Todd Township, District of Kenora (Patricia Portion); Ontario Division of Mines, Prelim Map P.1052.

Riley, R. A., 1978. OGS Map 2406, Todd Township 1:12000 scale.

Rugged Group, Todd Township from assessment files dated January 27, 1970 (see Goldcorp file).

Sanbourne-Barrie, M. Three Hundred Million Years of Tectonic History Recorded by the Red Lake Greenstone Belt, Ontario. Paper 2001-C19. Current Research, GSC 19p.

Sannes, D. L., January 29, 1990. Summary of the 1989 Field Season.

Sannes, D. L., April 27, 1998. Summary Descriptions of Former Goldquest Properties and other Red Lake Holdings of Goldcorp, Red Lake Mining Camp, Ontario.

Short, K.W., June 1985. Report on the Rowan Property Timber Headframe.

Siriunas, J. M., 1988. Report on the Goldquest Exploration Inc. Rowan Lake Gold Property Todd Township Red Lake Area, Ontario for United Reef Petroleum Limited.

Stone, D., Atkinson, B.T., Fogal, R., and assistants, 1993. Preliminary Map P.2332 Precambrian Geology Pipestone Bay (unedited). Scale 1:50 000 NTS Reference 52 M/1. Queen's Printer for Ontario.

Titley, E.D., September 1982. Red Lake Project Geophysical Report on the Todd Township Claims Red Lake Mining Division for Dickenson Mines.

Tims, Andrew, March 16, 2002. Geochemical Survey Report Rowan Property, Todd Township. NTS 52M/01.

Vamos, P.J., 1981. Red Lake Project Report # 12. Evaluation Report on Rowan Gold Mines Limited for the Dickenson Group.

Vamos, P.J., 2003. Report on the Pipestone Bay Gold Prospect, Red Lake, Todd Township, Ontario for Zenda Capital Corp

Van Tassell, R.E., October 31, 1984. Goldquest Report on the 1984 Trenching on the Rowan Claims in the Martin Bay Area.

Van Tassell, R.E., November 2, 1984. Goldquest 1984 Bulk Mining Sample Rowan 100 Level Adit, Todd Township.

Wait, W.K., December 21, 1984. Sorting Trials on rowan Island Samples, Aggen Inc.

Wober, H. H., December 15, 1989. Goldquest Project Evaluation and Development Strategy. Goldcorp Rowan Files.

28.0 CERTIFICATE OF QUALIFICATIONS

JOHN KITA, P.ENG.

This certificate applies to the NI 43-101 Technical Report entitled "TECHNICAL REPORT AND RESOURCE ESTIMATE ON THE WEST RED LAKE PROJECT, Todd, Hammell Lake, and Fairlie Townships, Red Lake Mining Division, Ontario (NTS 52M/1)" prepared for DLV Resources Ltd. (the Company"), dated December 13, 2022 (the "Technical Report"), with an effective date of October 31, 2022.

- 1. I, John Kita, am a Consulting Geological Engineer My office address is 95 Stapleton Drive, Toronto, Ontario, M9R 3A5.
- 2. I am a graduate of the University of Toronto, Toronto, Ontario, Canada, in 1978 with a Bachelor of Science (Applied) in Geological Engineering.
- 3. I am registered as an Engineer in the Province of Ontario (#24015505). I have worked as a geological engineer for a total of 40 years since my graduation. I have held positions of Chief Geologist at seven operating precious metal mines. My responsibilities included resource calculations, reconciliation of resource to mill results, and resource depletion calculations. I have also held Senior Exploration Manager positions, which have included evaluating gold properties using existing reports and performing in-house resource evaluations.
- 4. I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 5. I am a co author of the Technical Report titled "Technical Report and Resource Estimate on the West Red Lake Project", effective date February 16 2016: by JC Archibald, P. Bevan, J.Kita. I have also compiled historic geological information for West Red Lake Gold Mines on the West Red Lake Project.
- 6. I am independent of the Issuer applying the test set out in Part 1.5 of NI 43-101
- 7. I am responsible for all sections of the Technical Report titled "Technical Report and Resource Estimate on the West Red Lake Project" (effective date October 31, 2022).
- 8. I have conducted multiple site visits to the property. Between November 4th and 15th 2020, between February 16 to March 2 2021, and November 13, 2022. I was onsite during the exploration drilling campaigns.
- 9. I have read NI 43-101, and the Technical Report titled "Technical Report and Resource Estimate on the West Red Lake Project" (effective date October 31, 2022) has been prepared in compliance with NI 43-101 and Form 43-101F1.

- 10. At the effective date of the Technical Report titled "Technical Report and Resource Estimate on the West Red Lake Project" (effective date October 31, 2022) to the best of my knowledge, information, and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 11. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publications in the public company files on their websites accessible by the public regarding the Technical Report.

Dated this 13th day of December, 2022

Signature of Qualified Person

John Kita, P.Eng.

Name of Qualified Person

APPENDIX I

WEST RED LAKE PROJECT CLAIM LIST

Prefi	_	Pat/Lic/Leas	Barral	-		Size	B711#	F oundary
x	lenure	е	Parcel	Tenure Type	lownship	(Ha)	PIN#	Expiry
			ROWA	(JV Claims)	Y			
KRL	6178	8191	337	Patented MR & SR	Todd	9.10	42003-0063	does not expire
KRL	6179	8192	338	Patented MR & SR	Todd	18.26	42003-0064	does not expire
KRL	6180	8193	339	Patented MR & SR	Todd	11.45	42003-0051	does not expire
KRL	6181	8194	340	Patented MR & SR	Todd	15.63	42003-0052	does not expire
KRL	7336	8190	336	Patented MR & SR	Todd	10.45	42003-0055	does not expire
KRL	7337	8207	348	Patented MR & SR	Todd	13.88	42003-0142	does not expire
KRL	7338	8195	341	Patented MR & SR	Todd	15.08	42003-0067	does not expire
KRL	8167	8863	829	Patented MR & SR	Todd	15.62	42003-0053	does not expire
KRL	8168	8864	830	Patented MR & SR	Todd	19.80	42003-0056	does not expire
KRL	8169	8865	831	Patented MR & SR	Todd	28.53	42003-0017	does not expire
KRL	8170	8866	832	Patented MR & SR	Todd	18.82	42003-0018	does not expire
KRL	8171	8867	833	Patented MR & SR	Todd	15.03	42003-0019	does not expire
KRL	8571	8928	874	Patented MR & SR	Todd	16.22	42003-0054	does not expire
KRL	8572	8929	875	Patented MR & SR	Todd	20.58	42003-0065	does not expire
KRL	8573	8930	876	Patented MR & SR	Todd	16.24	42003-0066	does not expire
KRL	8606	8931	877	Patented MR & SR	Todd	10.86	42003-0075	does not expire
KRL	9633	8932	878	Patented MR & SR	Todd	20.46	42003-0023	does not expire
KRL	9634	8933	879	Patented MR & SR	Todd	12.00	42003-0024	does not expire
KRL	9635	8934	880	Patented MR & SR	Todd	11.18	42003-0025	does not expire
KRL	9635A	8935	881	Patented MR & SR	Todd	16.67	42003-0026	does not expire
KRL	9636	8936	882	Patented MR & SR	Todd	29.56	42003-0070	does not expire
KRL	9637	8937	883	Patented MR & SR	Todd	29.84	42003-0071	does not expire
KRL	9638	8938	884	Patented MR & SR	Todd	27.50	42003-0028	does not expire
KRL	9800	13155	2629	Patented MR & SR	Todd	15.09	42003-0096	does not expire
KRL	9801	13156	2630	Patented MR & SR	Todd	15.62	42003-0097	does not expire
KRL	9802	13157	2631	Patented MR & SR	Todd	12.47	42003-0098	does not expire
KRL	9999	8868	834	Patented MR & SR	Todd	15.79	42003-0050	does not expire
KRL	10000	8869	835	Patented MR & SR	Todd	17.31	42003-0062	does not expire
KRL	10070-LO	10009		Lic. of Occupation MLO	Todd	6.70		does not expire, pymt every 2 yrs
KRL	10070	8870	836	Patented MR & SR	Todd	14.89	42003-0068	does not expire
KRL	10357	8871	837	Patented MR & SR	Todd	22.74	42003-0029	does not expire
KRL	10371	8872	838	Patented MR & SR	Todd	23.23	42003-0030	does not expire
KRL	10372	8873	839	Patented MR & SR	Todd	16.18	42003-0022	does not expire
KRL	10392	8874	840	Patented MR & SR	Todd	17.50	42003-0013	does not expire
KRL	10403	8875	841	Patented MR & SR	Todd	11.68	42003-0061	does not expire
KRL	10404	8876	842	Patented MR & SR	Todd	13.64	42003-0073	does not expire

KRL	10405	8877	843	Patented MR & SR	Todd	13.45	42003-0074	does not expire
KRL	10406	8878	844	Patented MR & SR	Todd	12.46	42003-0072	does not expire
Prefix	Tenure	Pat/Lic/Lease	Parcel	Tenure Type	Township s	ize (Ha)	PIN#	Expiry
KRL	10407	8879	845	Patented MR & SR	Todd	13.56	42003-0085	does not expire
KRL	10408	8880	846	Patented MR & SR	Todd	10.37	42003-0086	does not expire
KRL	10434	8881	847	Patented MR & SR	Todd	13.05	42003-0020	does not expire
KRL	10435	8882	848	Patented MR & SR	Todd	18.11	42003-0021	does not expire
KRL	10553	8883	849	Patented MR & SR	Todd	17.98	42003-0069	does not expire
KRL	10563	8884	850	Patented MR & SR	Todd	13.10	42003-0091	does not expire
KRL	10564	8885	851	Patented MR & SR	Todd	12.06	42003-0090	does not expire
KRL	10603-LO	12070		Lic. of Occupation MLO	Todd	5.36		does not expire, pymt every 2 yrs
KRL	10603	13158	2632	Patented MR & SR	Todd	4.76	42003-0092	does not expire
KRL	11115	9187	1062	Patented MR & SR	Todd	15.32	42003-0095	does not expire
KRL	30799	14482	3501	Patented MR & SR	Todd	14.64	42003-0077	does not expire
KRL	30835-LO	12473		Lic. of Occupation MLO	Todd	5.35		does not expire, pymt every 2 yrs
KRL	200005	107258	589	Lease MRO	Todd	11.44	42003-0114	2041-02-28
KRL	200006	107258	589	Lease MRO	Todd	17.86	42003-0114	2041-02-28
KRL	200007	107258	589	Lease MRO	Todd	12.57	42003-0114	2041-02-28
KRL	200008	107258	589	Lease MRO	Todd	4.940	42003-0114	2041-02-28
KRL	200009	107258	589	Lease MRO	Todd	14.63	42003-0114	2041-02-28
KRL	200010	107258	589	Lease MRO	Todd	17.15	42003-0114	2041-02-28
KRL	200011	107258	589	Lease MRO	Todd	13.62	42003-0114	2041-02-28
KRL	200012	107258	589	Lease MRO	Todd	21.30	42003-0114	2041-02-28
KRL	200013	107258	589	Lease MRO	Todd	12.56	42003-0114	2041-02-28
KRL	200276	107258	589	Lease MRO	Todd	18.31	42003-0114	2041-02-28
KRL	200277	107258	589	Lease MRO	Todd	16.05	42003-0114	2041-02-28
KRL	200278	107258	589	Lease MRO	Todd	12.04	42003-0114	2041-02-28
KRL	200279	107258	589	Lease MRO	Todd	14.15	42003-0114	2041-02-28
KRL	541952	106125	2097	Lease MRO	Todd	29.11	42003-0113	2033-02-28
KRL	541953	106125	2097	Lease MRO	Todd	21.20	42003-0113	2033-02-28
KRL	541954	106125	2097	Lease MRO	Todd	14.80	42003-0113	2033-02-28
KRL	563661	106125	2097	Lease MRO	Todd	12.48	42003-0113	2033-02-28
KRL	563662	106125	2097	Lease MRO	Todd	11.63	42003-0113	2033-02-28
	541924			Unpatended	Hammell Lake	16		2029-02-03 (312103, 179707, 156202, 116919)
	541925			Unpatended	Hammell Lake	16		2029-02-03 (341263, 257610, 156202, 116919)
	541926			Unpatended	Hammell Lake	16		2029-02-03 (312045, 312103, 228919, 156202)
	541927			Unpatended	Hammell Lake	16		2029-02-03 (312045, 210072, 257610, 156202)
	541928			Unpatended	Hammell Lake	16		2029-02-03 (312045, 228919, 201511), 2027-02-03 (221641)
	541929			Unpatended	Hammell Lake	16		2029-02-03 (312045, 210072, 201511, 116451)
	541930			Unpatended	Hammell Lake	16		2027-02-03 (221641), 2029-02-03 (201511)
	541931			Unpatended	Hammell Lake	16		2029-02-03 (201511, 116451, 158148, 177642)
	541932			Unpatended	Hammell Lake	16		2027-02-03 (221641, 101896), 2029-02-03 (201511, 158148)
	541933			Unpatended	Hammell Lake	16		2029-02-03 (201511, 158148, 177642)

					Hammell			2027-02-03 (541934), 2029-02-03 (158148)
	541934			Unpatended	Lake	16		2027-02-03 (541934, 164824), 2029-02-03
	541935			Unpatended	Lake	16		(158148, 177642)
Prefix	Tenure	Pat/Lic/Lease	Parcel	Tenure Type	Township	Size (Ha)	PIN#	Expiry
	541936			Unpatended	Hammell Lake	16		2027-02-03 (222954, 158164)
					Hammell			2027-02-03 (222954 276829 204114
	541937			Unpatended	Lake	16		158164)
	E41020			Unnetended	Hammell	10		2027-02-03 (276829, 204114,
	541938			Unpatended	Hammell	16		2027-02-03
	541939			Unpatended	Lake	16		(222954), 2027-05-24 (312127)
	541940			Unpatended	Hammell Lake	16		2027-02-03 (222954, 276829), 2027-05-24 (312127, 276152, 276152)
	541941			Unnatended	Hammell	16		2027-02-03 (276829, 258810), 2027-05-24 (325482)
	541541			onpatenaeu	Hammell	10		2029-02-03 (312103, 222846,
	541942			Unpatended	Lake	16		179707), 2027-02-03 (144140)
	541943			Unpatended	Hammell Lake	16		2029-02-03 (222846), 2027-02-03 (144140)
	541944			Unpatended	Hammell Lake	16		2027-02-03 (228968, 144140), 2029-02-03 (312103, 228919)
	E4104E			Unnational	Hammell	16		2027-02-03
	541945			Unpatended	Lake	16		2027-02-03
	541946			Unpatended	Hammell Lake	16		(228968, 221641), 2029-02-03 (228919)
	541947			Unpatended	Hammell Lake	16		2027-02-03 (228968, 221641, 101896), 2027- 07-25 (211557, 101900), 2029-02- 03 (228919)
	541948			Unnatended	Hammell	16		2029-02-03 (222846, 115109)
	541540			onpatended	Hammell	10		2029-02-03 (115109, 165595)
	541949			Unpatended	Lake	16		
	541950			Unpatended	Hammell Lake	16		2028-11-19 (288/88, 126991), 2029-02-03 (222846, 115109)
					Hammell			2028-11-19 (288788, 115009),
	541951			Unpatended	Lake	16		2029-02-03 (115109, 165595)
	563036			Unpatended	Lake	16		2028-11-19 (276176, 288787)
				·				2028-08-25
	563666			Unpatended	DboT	16		(314668, 297631, 288896, 222872)
	563667			Unpatended	Todd	16		2028-08-25 (296180, 288896, 276825, 222872, 162914), 2028-08-30 (116974)
	563668			Unpatended	Todd	16		2028-08-25 (314668, 288896), 2028-11-19 (288787, 158150)
	563669			Unpatended	Todd	16		2028-11-19 (288787, 158150)
	560046				Hammell	1.5		2028-11-19 (288788, 126992,
	563946			Unpatended	Lake	16		100215, 126991)
	563947			Unpatended	Lake	16		100215, 115009)
	563948			Unpatended	Lake	16		2028-11-19 (324843, 179711, 179712, 115009)
	563949			Unpatended	Hammell Lake	16		2028-11-19 (324843, 288787, 179712, 158150)
	563950			Unpatended	Hammell Lake	16		2028-11-19 (324843, 276176, 288787, 100215)
	623493			Unpatended	Todd	16		2028-08-25 (288896, 162914), 2028-11-19 (276176, 288787)
	1144316			Unpatended	Hammell Lake	32		2027-06-17 (211417, 277419, 157521, 163528)

_						
					:	2027-07-25 (258886, 143413), 2028-11-19 (126992), 2028-05-26
L	1184146	Unpatended	lodd	32		(100409)
L			Hammell			2028-08-25
L	1184861	Unpatended	Lake	16		(314668), 2028-07-21 (129566)
L						2028-08-25
L						(314668, 297631), 2028-07-21
L						(343359, 206363, 123837,
L	1184862	Unpatended	Fairlie	80		129566)
Γ						2028-07-21 (343359, 123838,
L	1184863	Unpatended	Fairlie	32		101315, 123837)
F			Hammell			2028-08-30 (116974 101870
L	1218922	Unnatended	Lake	16		101869 158120)
ŀ	1210522	onpatended	Luke	10		2027-07-25
L						(279607 211557 212660
L			Hammoll			(279007, 211337, 312000, 258886, 259550, 144680, 143413)
L	1218023	Unnatondod	Lako	64	·	101000 145415)
ŀ	1210925	onpatended		04		
L	1224120	University of a d	Hammell	40		2027-05-24 (312127, 288785,
ŀ	1234138	Unpatended	Lake	48	ŕ	276152, 100213, 156784, 126988)
L						2027-05-24
L						(236895, 217452, 284041,
L					1	200931, 200929, 288785, 236894,
L			Hammell		:	325482, 217453, 200930, 276152,
L	1234139	Unpatended	Lake	128		<u>107820, 126988, 107821, 136764)</u>
L						2027-07-27
L			Hammell			(283538, 271419, 151562,
L	1234151	Unpatended	Lake	64		113851, 151572)
Γ						
т			1	1		

Prefix	Tenure	Pat/Lic/Lease	Parcel	Tenure Type	Township	Size (Ha)	PTN#	
TICHA	Tenare		Rowa (Red	n Mine Property Summit Claims	roundinp	0.20 (114)		
KRL	10235			Patented MR&SR	Todd	10		does not expire
KRL	10358			Patented MR&SR	Todd	15		does not expire
Prefix	Tenure	Pat/Lic/Lease	Parcel	Tenure Type	Township	Size (Ha)	PIN#	
		Мо	unt Ja	mie Mine Prope	rtv			
KRL	10393			Patented MR&SR	Todd			does not expire
KRL	10394			Patented MR&SR	Todd			does not expire
KRL	10395			Patented MR&SR	Todd			does not expire
KRL	10396			Patented MR&SR	Todd			does not expire
KRL	10420			Patented MR&SR	Todd			does not expire
KRL	10421			Patented MR&SR	Todd			does not expire
KRL	10422			Patented MR&SR	Todd			does not expire
KRL	10423			Patented MR&SR	Todd			does not expire
KRL	11064			Patented MR&SR	Todd			does not expire
KRL	10468	107316		Lease MRO	Todd			2042-07-31
KRI	1144268	107316		Lease MRO	Todd			2042-07-31
	1184167			Unnatented	Todd			2028-12-31 (201710), 2028- 06-28 (195326)
	1184115			Unpatented	Todd			(338456, 314015, 312128, 309624, 263067, 251038, 193606, 148266), 2028- 12-31 (317586) 2028-09-27 (316852, 176166, 147555, 108438), 2028- 11-09 (312128, 309624, 193606), 2028- 02 16 (202416)
								130361, 130064, 130063), 2022-
	1144277 1144269			Unpatented Unpatented	Todd Todd			08-24 (100214) 2028-12-31 (343215, 317586, 304932, 297522, 212188, 201710)
	1234187			Unpatented	Todd			2028-09-27 (332135, 332134332133, 328634, 328633, 315861, 315860, 309128, 268705, 260759, 224833, 213281, 194734, 194733, 194716, 165463, 146590, 146589, 140618, 140616) 2028-09-27
	1234188			Unpatented	Todd			(332120, 332119, 315845, 268696, 194718, 194717, 194716, 146566, 140619.

			140618, 140617, 140616)
			2028-09-27 (328634,
1234189	Unpater	ted Todd	315861, 315860)
			2028-09-27
			(268/31,
1234190	Unpater	ted Todd	108438)
120.1290	onputer		2028-09-27
			(316852,
			315860, 268731,
1224101	Uppotor	tod Todd	250633, 146555,
 1234191	Unpater	ited I odd	
			(315860.
			268731, 268705,
1234192	Unpater	ted Todd	130547)
			2028-11-09
			(314015,
			08-24 (128233
1234519	Unpater	ted Todd	114992)
			2028-11-09
			(312128), 2028-
			08-08 (288786),
			2028-08-24 (114992
1234533	Unpater	ted Todd	100214)
			2028-11-09
			(312128,
 1234524	Unpater	ted Todd	 100214)
			2028-11-09
1234534	Unpater	ted Todd	312128)
			2028-12-31
			(297522,
			201710,
			195326), 2028-
			278200 232071
3017000	Unpater	ted Todd	225454, 213374)
			2028-12-31
			(297522,
			212188), 2028-
			278200, 204090.
3017001	Unpater	ted Todd	102011)

APPENDIX II

DIAMOND DRILL HOLE LOCATIONS

HOLE-ID	East	North	ele	LENGTH	Az	dip
Mt.Jamie						
HL-01-07	419800	5658240	353	56.0	30	-45
HL-02-07	419769	5658217	352	140.0	30	-48
HL-03-07	419854	5658164	357	105.0	30	-45
HL-04-07	419830	5658143	359	101.0	30	-45
HL-05-07	419875	5658161	361	50.0	30	-45
HL-06-07	419818	5658091	360	152.0	30	-55
HL-07-07	419848	5658106	368	161.0	30	-55
HL-08-07	419911	5658149	362	77.0	30	-45
HL-09-07	419868	5658103	372	155.0	30	-55
HL-10-07	419903	5658106	362	101.0	30	-50
HL-12-07	419925	5658050	358	100.0	30	-51
HL-13-07	419937	5658028	364	152.0	30	-55
HL-14-07	419972	5658079	353	150.0	30	-62
HL-15-07	419949	5658021	353	152.0	30	-50
HL-16-07	419813	5658182	357	38.2	30	-50
HY-07-17	420036	5658174	350	171.0	210	-55
HY-07-18	419984	5658102	350	170.0	30	-45
HY-07-19	420037	5658024	350	171.0	30	-45
HY-07-20	420212	5658011	350	170.0	30	-45
HY-07-21	420127	5657890	350	170.0	30	-45
HY-07-22	419759	5658110	350	299.0	30	-50
HY-07-23	419192	5658091	350	285.0	30	-50
HY-07-24	419719	5658369	350	220.0	30	-45
HY-07-25	419710	5658433	350	230.0	30	-45
HY-07-26	419286	5658109	350	170.0	30	-45
HY-07-27	419522	5658431	350	291.0	30	-45
HY-07-28	419914	5658016	350	200.0	30	-55
HY-07-29	419901	5657995	350	270.0	30	-55
HY-07-30	419862	5658047	350	201.0	30	-55
HY-07-31	419849	5658026	350	266.0	30	-55
HY-07-32	419705	5658173	350	150.0	30	-55
HY-07-33	419692	5658151	350	197.0	30	-55
HY-07-34	419950	5658422	350	400.0	205	-52
HY-07-35	419387	5658517	350	300.0	45	-45
HY-07-36	420246	5658233	350	300.0	30	-45
HY-07-37	418902	5658575	350	453.0	30	-45
HY-07-38	420085	5657968	350	360.0	30	-45
HY-07-39	420434	5657824	350	448.2	30	-45
Hy-11-01	419101	5658307	364	54.0	210	-60
HY-11-02	419101	5658307	364	81.0	210	-80
HY-11-03	419161	5658317	375	42.0	210	-55
HY-11-04	419161	5658317	375	72.0	210	-70
HY-11-05	419161	5658317	375	81.0	135	-45
HY-11-06	419223	5658295	378	51.0	30	-45
HY-11-07	419223	5658295	378	72.0	30	-70

HOLE-ID	East	North	ele	LENGTH	Az	dip
HY-11-08	419223	5658295	378	81.0	210	-50
HY-11-09	419255	5658730	368	51.0	205	-45
HY-11-10	419255	5658730	368	60.0	205	-75
HY-11-11	419228	5658693	364	72.0	205	-45
HY-11-12	419230	5658737	372	60.0	205	-75
HY-11-13	419205	5658745	367	51.0	205	-45
HY-11-14	419205	5658745	367	60.0	205	-75
HY-11-15	419836	5658414	384	111.0	30	-45
HY-11-16	419927	5658456	387	87.0	210	-45
HY-11-17	419927	5658456	387	90.0	210	-65
HY-11-18	419997	5658451	395	120.0	210	-70
HY-11-19	420307	5658224	404	102.0	210	-45
HY-11-20	420424	5658180	405	102.0	210	-45
HY-11-21	420514	5658154	407	102.0	210	-45
HY-11-22	420579	5658132	413	111.0	210	-45
HY-11-23	420458	5658467	395	190.0	240	-45
HY-11-24	420458	5658467	395	180.0	200	-60
HY-11-25	420124	5658561	390	180.0	150	-45
HY-11-26	419445	5658637	381	210.0	200	-45
HY-11-27	419535	5658626	380	201.0	200	-45
HY-11-28	419667	5658570	371	201.0	200	-45
HY-11-29	419722	5658633	382	192.0	45	-45
HY-11-30	420181	5658644	392	171.0	40	-45
HY-11-31	420529	5658734	393	251.0	210	-45
HY-12-01	419781	5658308	387	123.0	210	-45
HY-12-02	419781	5658308	387	159.0	210	-60
HY-12-03	419739	5658332	386	114.0	210	-45
HY-12-04	419739	5658332	386	162.0	210	-60
HY-12-05	419276	5658301	390	115.0	210	-45
HY-12-06	419276	5658301	390	76.0	210	-60
HY-12-06a	419276	5658301	390	76.0	210	-60
HY-12-07	419087	5658369	402	143.0	210	-45
HY-12-08	419087	5658369	402	201.0	210	-60
HY-12-09	419196	5658759	384	81.0	205	-45
HY-12-10	419196	5658759	384	111.0	205	-60
HY-12-11	419162	5658779	384	81.0	205	-45
HY-12-12	419162	5658779	384	111.0	205	-60
HY-12-13	420016	5658633	392	171.0	210	-45
HY-12-14	419924	5658680	396	171.0	210	-45
HY-12-16	420134	5658821	387	174.0	30	-45
HY-12-17	420315	5658755	380	171.0	30	-45
HY-12-18	420476	5658752	388	162.0	25	-45
HY-12-19	420629	5658731	398	159.0	25	-45
HY-12-20	420347	5658530	402	154.0	210	-45
HY-12-20b	420337	5658510	400	222.0	210	-60
HY-12-21	420601	5658457	400	177.0	205	-45

HOLE-ID	East	North	ele	LENGTH	Az	dip
HY-12-22	420502	5658409	357	192.0	210	-45
HY-12-23	420503	5658412	358	270.0	210	-60
HY-12-24	420187	5658313	395	192.0	210	-45
HY-12-25	420188	5658315	396	238.0	205	-45
HY-12-26	420564	5658185	395	112.0	210	-45
HY-12-27	420564	5658185	395	160.0	210	-60
HY-12-28	420512	5658258	400	175.0	205	-45
HY-12-29	420512	5658258	400	250.0	205	-60
HY-12-30	420879	5658309	383	209.0	210	-45
HY-12-31	420879	5658309	383	300.0	210	-60
101	holes			16,283.4	m	
Rowan						
HY-11-32	424856	5657377	403	150.0	225	-45
HY-11-33	424856	5657377	403	175.0	225	-60
HY-11-34	424926	5657448	385	249.0	225	-50
HY-11-35	424891	5657341	405	150.0	225	-45
HY-11-36	424891	5657341	405	175.0	225	-60
HY-11-37	425011	5657386	382	276.0	225	-45
HY-11-38	425011	5657386	382	351.0	225	-60
HY-11-39	425047	5657339	392	300.0	225	-50
HY-11-40	425109	5657283	394	327.0	225	-55
HY-11-41	421331	5656840	376	185.0	320	-45
HY-11-42	421331	5656840	376	261.0	320	-60
HY-11-43	421500	5657040	376	186.0	140	-45
HY-11-44	421500	5657040	371	261.0	140	-60
HY-11-45	421531	5657088	371	240.0	140	-45
HY-11-46	421620	5657130	376	105.0	140	-45
HY-11-47	421620	5657130	376	264.0	140	-55
HY-11-48	421585	5657100	377	186.0	140	-45
HY-11-49	421585	5657100	377	351.0	140	-60
HY-11-50	421700	5657150	368	201.0	140	-45
HY-11-51	421700	5657150	368	261.0	140	-60
HY-11-52	421745	5657225	381	279.0	140	-45
HY-11-53	421781	5657186	386	282.0	140	-60
HY-11-54	421835	5657255	370	299.0	140	-45
HY-11-55	421870	5657215	370	234.0	205	45
HY-11-56	421918	5657252	384	105.0	140	-45
HY-11-57	421891	5657284	379	195.0	140	-45
HY-11-58	422204	5658078	358	351.0	180	-45
HY-11-59	422204	5658078	358	501.0	180	-60
HY-11-60	422294	5658062	364	341.0	180	-45
HY-11-61	422294	5658062	364	501.0	180	-60
HYR-07-01	422061	5657625	370	575.0	353	-52
HYR-07-02	422021	5657745	370	350.5	355	-46

HOLE-ID	East	North	ele	LENGTH	Az	dip
HYR-07-03	422021	5657745	370	477.0	355	-62
HYR-07-04	421661	5657675	370	336.0	356	-45
HYR-07-05	421661	5657525	370	620.2	353	-60
HYR-07-06	421331	5657615	370	528.0	355	-50
HYR-07-07	421331	5657615	370	651.0	353	-65
HYR-07-08	422935	5657851	370	695.9	350	-45
HYR-08-09	421385	5656918	370	576.8	120	-50
HYR-08-10	422270	5657300	370	512.0	350	-50
HYR-08-11	421385	5656918	378	747.0	120	-60
HYR-08-12	424958	5657415	383	347.7	220	-50
HYR-08-13	424958	5657415	383	378.4	220	-65
HYR-08-14	424878	5657321	381	433.0	220	-60
HYR-08-15	424690	5657620	380	240.0	225	-45
HYR-08-16	424690	5657620	380	262.5	225	-60
HYR-08-20	422205	5657505	373	735.0	0	-50
HYR-08-21	423503	5657655	375	694.2	132	-50
HYR-08-22	422500	5658005	380	488.4	325	-50
HYR-08-23	422545	5658155	400	330.0	325	-60
HYR-10-24	422062	5658022	368	300.0	180	-45
HYR-10-25	422062	5658022	368	501.0	180	-67
HYR-10-26	422122	5658022	350	345.0	175	-45
HYR-10-27	422122	5658022	350	363.0	172	-60
HYR-10-28	421399	5656905	379	264.0	320	-50
HYR-10-29	421399	5656906	379	321.0	320	-80
HYR-10-30	421511	5656940	369	117.0	310	-55
HYR-10-31	421403	5656912	379	282.8	30	-70
HYR-10-32	421399	5656919	379	162.0	275	-75
HYRC-08-17	424975	5657270	400	210.0	225	-45
HYRC-08-18	424975	5657270	400	216.0	225	-60
HYRC-08-19	424720	5657460	410	171.0	225	-45
RLG-13-01	422087	5658112	358	426.0	180	-45
RLG-13-02	422087	5658112	358	600.0	180	-60
RLG-13-03	422174	5658124	364	426.0	180	-45
RLG-13-04	422174	5658124	364	600.0	180	-60
RLG-13-05	422365	5658143	372	249.0	180	-45
RLG-13-06	422365	5658143	372	381.0	180	-60
RLG-13-07	422388	5658077	368	288.0	180	-45
RLG-13-08	422388	5658077	368	313.0	180	-60
RLG-14-09	422189	5657984	358	66.0	360	-45
RLG-14-10	422189	5657983	356	138.0	360	-82
RLG-14-11	422156	5657964	354	90.0	360	-45
RLG-14-12	422156	5657963	354	102.0	360	-67
RLG-14-13	422214	5657949	362	141.0	360	-55
RLG-14-14	422161	5657855	365	216.0	360	-45
RLG-14-15	422200	5657857	363	240.0	360	-48
RLG-14-16	421963	5658044	372	135.0	180	-45

HOLE-ID	East	North	ele	LENGTH	Az	dip
RLG-14-17	421864	5657943	370	135.0	360	-45
RLG-14-18	422078	5658013	372	153.0	180	-45
80	holes			25,672.4		
18:	L			41,955.8		

Hole#	East	North	ele	Length (m)	Az	Dip
RLG-15-19	422,304	5,657,948	372	300.0	360	-45
RLG-15-20	422,304	5,657,948	372	261.0	360	-60
RLG-15-21	422,346	5,657,951	372	180.0	360	-45
RLG-15-22	422,451	5,657,915	372	327.0	360	-45
RLG-15-23	422,550	5,657,862	372	375.0	360	-45
RLG-15-24	422,699	5,657,821	372	324.0	360	-45
6	holes	total		1,767.0		
RLG-16-24ext	422,694	5,657,816	379	73.0	360	-45
RLG-16-25	422,650	5,657,929	370	210.0	360	-45
RLG-16-26	422,700	5,657,980	377	120.0	360	-45
RLG-16-27	422,751	5,657,871	381	267.0	360	-45
RLG-16-28	422,799	5,657,821	380	321.0	360	-45
RLG-16-29	422,851	5,657,878	389	240.0	360	-45
RLG-16-30	423,000	5,657,892	389	189.0	360	-45
RLG-16-31	422,786	5,658,051	385	945.0	92	-52
8				2,365.0		
hinge area						
RLG-16-32	423,226	5,657,774	358	498.0	310	-45
RLG-16-33	422,906	5,657,826	378	246.0	60	-45
Resource	expan					
RLG-16-34	421,882	5,657,652	378	465.0	355	-48

Hole#	East	North	ele	Length (m)	Az	Dip
RLG-16-35	421,917	5,657,747	375	351.0	357	-50
RLG-16-36	421,754	5,657,653	380	474.0	357	-58
RLG-16-37	421,545	5,657,684	390	276.0	357	-45
RLG-16-38	421,480	5,657,723	393	351.0	355	-48
RLG-16-39	421,561	5,657,765	401	150.0	360	-48
8	holes			2,811.0		
RLG-17-40	421,200	5,657,900	408	189.0	178	-45
RLG-17-41	421,201	5,657,953	409	234.0	178	-60
RLG-17-42	421,299	5,657,895	402	216.0	178	-45
RLG-17-43	421,449	5,657,960	390	264.0	176	-45
RLG-17-44	421,705	5,657,954	395	393.0	176	-60
RLG-17-45	421,795	5,658,050	379	357.0	175	-45
RLG-17-46	422,251	5,657,749	364	433.5	353	-55
RLG-17-47	422,202	5,657,736	371	405.0	355	-45
RLG-17-48	422,100	5,657,701	389	522.0	353	-45
9	HOLES			3,013.5		
RLG-17-49	423,243	5,656,845	380	654.0	323	-47
RLG-17-50	421,802	5,657,513	380	600.0	360	-52
RLG-17-51	421,802	5,657,513	380	650.0	360	-62
RLG-17-52	421,600	5,657,620	380	351.0	360	-50
RLG-17-53	424,145	5,657,778	380	351.0	360	-60
RLG-17-54	423,773	5,658,149	380	450.0	165	-45
6	holes			3,056.0		
RLG-18-55	422,060	5,657,400	373	1,272.0	352	-74
NT Zone						
RLG-18-56	421,270	5,656,858	371	150.0	325	-45
RLG-18-57	421,270	5,656,858	371	177.0	325	-60
RLG-18-58	421,211	5,656,859	375	201.0	275	-45
RLG-18-59	421,211	5,656,859	375	186.0	275	-55

Hole#	East	North	ele	Length (m)	Az	Dip
RLG-18-60	421,366	5,656,868	374	171.0	325	-45
RLG-18-61	421,366	5,656,868	374	159.0	325	-55
RLG-18-62	421,437	5,656,936	380	219.0	320	-45
RLG-18-63	421,456	5,656,907	378	180.0	320	-60
1	RW			1,272.0		
8	NT			2,715.0		
RLG-19-56A	421,270	5,656,858	369	252.0	325	-51
RLG-19-64	421,280	5,656,816	359	204.0	335	-50
RLG-19-65	421,336	5,656,841	363	288.0	335	-65
RLG-19-66	421,409	5,656,895	368	144.0	335	-45
RLG-19-67	421,409	5,656,895	368	252.0	335	-65
RLG-19-68	421,337	5,656,972	369	222.0	155	-45
RLG-19-69	421,337	5,656,972	369	252.0	155	-60
RLG-19-70	421,280	5,657,028	369	273.0	155	-45
RLG-19-71	421,394	5,657,051	376	243.0	155	-45
RLG-19-72	421,397	5,657,106	387	327.0	155	-50
RLG-19-73	421,373	5,657,102	385	351.0	155	-48
RLG-19-74	421,406	5,657,081	378	252.0	155	-45
12	holes			3,060.0		
RLG-20-75	421,457	5,657,159	372	363.0	157	-45
RLG-20-76	421,301	5,657,145	370	406.5	157	-45
RLG-20-77	421,274	5,657,079	367	339.0	157	-45
RLG-20-78	421,164	5,657,003	376	276.0	157	-45
RLG-20-79	421,459	5,657,073	373	243.0	157	-45
RLG-20-80	421,526	5,657,181	377	324.0	157	-47
RLG-20-81	421,564	5,657,230	373	375.0	157	-45
RLG-20-82	421,379	5,657,150	383	465.0	157	-55
RLG-20-83	421,367	5,656,893	376	198.0	338	-72
RLG-20-84	421,347	5,656,944	375	198.0	158	-72
10				3,187.5	m	

Hole#	East	North	ele	Length (m)	Az	Dip
RLG-20-85	421,665	5,657,175	376	246.0	157	-45
RLG-20-86	421,665	5,657,175	376	663.0	152	-72
RLG-20-87	421,319	5,656,939	373	117.0	157	-45
RLG-20-88	421,319	5,656,939	373	276.0	157	-75
RLG-20-89	421,277	5,656,913	369	162.0	157	-45
RLG-20-90	421,277	5,656,913	369	285.0	157	-75
RLG-20-91	421,762	5,657,178	379	192.5	157	-45
RLG-20-92	421,977	5,657,326	374	429.0	155	-45.001
RLG-20-93	422,152	5,657,106	381	324.0	337	-45
RLG-20-94	421,513	5,656,929	369	501.0	260	-45
10				3,195.5	m	
RLG-21-095	422,409	5,657,322	365	636.0	325	-45
RLG-21-096	421,600	5,657,791	399	246.0	358	-45
RLG-21-097	421,578	5,657,786	399	78.0	0	-45
RLG-21-098	421,578	5,657,785	399	195.0	0	-75
RLG-21-099	421,600	5,657,785	396	55.0	358	-55
RLG-21-100	421,537	5,657,786	398	72.0	360	-45
RLG-21-101	421,536	5,657,785	399	75.0	360	-75
RLG-21-102	421,518	5,657,772	395	87.0	360	-45
RLG-21-103	421,520	5,657,771	400	81.0	360	-65
RLG-21-104	421,500	5,657,766	392	111.0	360	-45
RLG-21-105	421,500	5,657,766	393	105.0	360	-70
RLG-21-106	421,628	5,657,868	399	111.0	188	-50
RLG-21-107	421,607	5,657,826	401	93.0	198	-45
RLG-21-108	421,609	5,657,822	403	75.0	140	-45
RLG-21-109	421,560	5,657,651	378	486.0	355	-53
RLG-21-110	421,683	5,657,791	369	230.1	345	-45
RLG-21-111	421,680	5,657,797	369	168.0	345	-60
RLG-21-112	421,710	5,657,804	368	75.0	359	-45
RLG-21-113	421,701	5,657,670	369	402.0	356	-48

Hole#	East	North	ele	Length (m)	Az	Dip
RLG-21-114	421,959	5,657,779	366	288.0	357	-57
20	DDH			3669.1	m	
HOLE-ID	East	North	ele	LENGTH	Az	DIP
	Mt. Jamie	-				
MJ-17-01	419,944	5,658,181	388	108.0	210	-45
MJ-17-02	419,900	5,658,206	391	102.0	210	-45
MJ-17-03	419,901	5,658,207	391	156.0	210	-60
MJ-17-04	419,827	5,658,229	382	75.0	210	-45
MJ-17-05	419,791	5,658,153	386	162.0	30	-45
MJ-17-06	419,832	5,658,177	386	81.0	30	-45
MJ-17-07	419,799	5,658,226	376	75.0	30	-45
MJ-17-08	419,816	5,658,153	391	141.0	30	-45
MJ-17-09	419,845	5,658,144	391	126.0	30	-45
MJ-17-10	419,825	5,658,118	395	204.0	30	-50
MJ-17-11	419,890	5,658,117	402	201.0	30	-45
MJ-17-12	419,863	5,658,079	386	165.0	30	-50
MJ-17-13	419,922	5,658,086	381	108.0	30	-45
MJ-17-14	419,871	5,658,399	382	108.0	30	-45
MJ-17-15	419,860	5,658,423	380	78.0	30	-45
15 holes				1,890.0		

APPENDIX III

DIAMOND DRILL HOLE SUMMARY OF RESULTS

HOLE-ID	FROM (m)	TO (m)	Au - gpt	m	GxW
HL-03-07	41.5	42	103.85	0.5	51.9
HL-05-07	34.5	36.5	63.96	2	127.9
HL-08-07	27.7	28.7	35.04	1	35.0
HL-14-07	46.75	47.05	38.3	0.3	11.5
Hy-07-17	10	10.3	8.57	0.3	2.6
Hy-07-19	41.5	43.6	6.55	2.1	13.8
HY-07-24	164.0	164.3	1.24	0.3	0.4
HY-07-30	124.9	125.2	2.10	0.3	0.6
HY-07-31	151.4	151.8	1.29	0.4	0.5
HY-07-37	227.2	228.0	3.69	0.8	1.8
HY-07-39	431.6	432.0	1.17	0.4	0.5
HY-11-05	68.0	69.0	4.55	1.0	4.6
HY-11-08	50.0	51.0	2.16	1.0	2.2
HY-11-10	3.0	4.0	1.46	1.0	1.5
HY-11-11	56.0	58.0	3.52	2.0	7.0
HY-11-15	55.0	57.0	17.20	2.0	34.4
HY-11-16	17.0	21.0	2.55	4.0	10.2
HY-11-16	28.0	29.0	1.14	1.0	1.1
HY-11-19	21.0	23.0	8.25	2.0	16.5
HY-11-19	60.0	61.0	2.39	1.0	2.4
HY-11-19	81.0	82.0	2.06	1.0	2.1
HY-11-28	139.0	140.0	4.23	1.0	4.2
Hy-11-32	33.0	34.0	1.25	1.0	1.2
Hy-11-32	94.0	95.0	2.55	1.0	2.6
Hy-11-32	98.0	99.0	3.08	1.0	3.1
Hy-11-32	113.0	114.0	2.54	1.0	2.5
Hy-11-32	118.0	124.0	3.90	6.0	23.4
Hy-11-32	121.0	incl	9.49	2.0	19.0
Hy-11-32	129.0	132.0	6.83	3.0	20.5
Hy-11-32	137.0	139.0	4.61	2.0	9.2
Hy-11-33	44.0	45.0	1.01	1.0	1.0
Hy-11-33	76.0	77.0	1.42	1.0	1.4
Hy-11-33	99.0	100.0	1.58	1.0	1.6
Hy-11-33	114.0	119.0	1.75	5.0	8.7
Hy-11-33	114.0	incl	5.15	1.0	5.2
Hy-11-33	146.0	148.0	3.83	2.0	7.7
Hy-11-34	231.0	237.0	1.01	6.0	6.1
Hy-11-35	28.0	32.0	8.85	4.0	35.4
Hy-11-35	107.0	109.0	13.90	2.0	27.8
Hy-11-36	39.0	41.0	3.67	2.0	7.3
Hy-11-36	139.0	141.0	5.38	2.0	10.8
Hy-11-38	253.0	254.0	1.31	1.0	1.3
Hy-11-38	256.0	257.0	1.58	1.0	1.6
Hy-11-39	88.0	90.0	1.50	2.0	3.0
Hy-11-39	174.0	176.0	5.93	2.0	11.9

HOLE-ID	FROM (m)	TO (m)	Au - gpt	m	GxW
HY-11-41	13.0	14.0	1.39	1.0	1.4
HY-11-41	34.0	36.0	1.23	2.0	2.5
HY-11-41	78.0	81.0	5.35	3.0	16.1
HY-11-41	97.0	98.0	3.68	1.0	3.7
HY-11-41	155.0	156.0	6.17	1.0	6.2
HY-11-42	40.0	49.0	2.48	9.0	22.3
HY-11-42	40.0	incl	4.18	3.0	12.6
HY-11-42	76.0	77.0	1.15	1.0	1.2
HY-11-42	109.0	111.0	1.59	2.0	3.2
HY-11-42	126.0	127.0	1.98	1.0	2.0
HY-11-42	145.0	152.0	4.77	7.0	33.4
HY-11-42	145.0	incl	14.35	2.0	28.7
HY-11-42	258.0	260.0	2.94	2.0	5.9
HY-11-43	86.0	87.0	2.21	1.0	2.2
HY-11-44	185.0	188.0	1.52	3.0	4.6
HY-11-44	231.0	232.0	2.29	1.0	2.3
HY-11-45	151.0	152.0	1.19	1.0	1.2
HY-11-47	48.0	49.0	6.38	1.0	6.4
HY-11-47	111.0	112.0	1.09	1.0	1.1
HY-11-48	47.0	49.0	3.56	2.0	7.1
HY-11-48	88.0	90.0	6.25	2.0	12.5
HY-11-48	112.0	113.0	1.36	1.0	1.4
HY-11-48	141.0	142.0	4.70	1.0	4.7
HY-11-48	155.0	156.0	1.24	1.0	1.2
HY-11-48	177.0	178.0	1.40	1.0	1.4
HY-11-49	43.0	45.0	5.96	2.0	11.9
HY-11-49	98.0	100.0	7.67	2.0	15.3
HY-11-49	128.0	129.0	1.46	1.0	1.5
HY-11-49	175.0	176.0	1.10	1.0	1.1
HY-11-50	39.0	40.0	1.51	1.0	1.5
HY-11-50	85.0	86.0	3.29	1.0	3.3
HY-11-50	120.0	121.0	1.25	1.0	1.3
HY-11-50	171.0	172.0	1.24	1.0	1.2
HY-11-51	31.0	32.0	2.00	1.0	2.0
HY-11-51	100.0	102.0	2.49	2.0	5.0
HY-11-51	226.0	229.0	4.46	3.0	13.4
HY-11-52	23.0	24.0	1.28	1.0	1.3
HY-11-52	49.0	50.0	3.88	1.0	3.9
HY-11-52	172.0	173.0	1.21	1.0	1.2
HY-11-53	132.0	133.0	2.88	1.0	1.6
HY-11-53	205.0	206.0	1.17	1.0	1.2
HY-11-53	221.0	222.0	3.60	1.0	3.6
HY-11-55	95.0	96.0	4.82	1.0	4.8
HY-11-55	213.0	214.0	1.05	1.0	1.1
HY-11-58	84.0	88.0	103.46	4.0	413.8

HOLE-ID	FROM (m)	TO (m)	Au - gpt	m	GxW
HY-11-58	306.0	307.0	3.99	1.0	4.0
HY-11-59	53.0	54.0	1.28	1.0	1.3
HY-11-59	255.0	257.0	37.18	2.0	74.4
HY-11-59	259.0	260.0	2.54	1.0	2.5
HY-11-59	401.0	402.0	1.67	1.0	1.7
HY-11-60	54.0	55.0	3.11	1.0	3.1
HY-11-60	71.0	72.0	2.20	1.0	2.2
HY-11-61	78.0	79.0	1.06	1.0	1.1
HY-11-61	84.0	85.0	1.02	1.0	1.0
HY-11-61	411.0	413.0	4.76	2.0	9.5
HY-12-01	39.0	41.0	6.82	2.0	13.6
HY-12-02	80.0	81.0	4.12	1.0	4.1
HY-12-02	87.0	93.0	5.32	6.0	31.9
HY-12-02	94.0	95.0	1.11	1.0	1.1
HY-12-05	57.0	58.0	1.40	1.0	1.4
HY-12-07	91.0	92.0	5.38	1.0	5.4
HY-12-08	16.0	17.0	2.08	1.0	2.1
HY-12-13	134.0	135.0	2.16	1.0	2.2
HY-12-22	56.0	57.0	2.56	1.0	2.6
HY-12-25	60.0	61.0	2.98	1.0	1.8
HY-12-25	86.0	88.0	13.45	2.0	26.9
HY-12-25	122.0	123.0	1.90	1.0	1.9
HY-12-27	136.0	137.0	3.72	1.0	3.7
HY-12-28	109.0	111.0	1.89	2.0	3.8
HY-12-29	74.0	76.0	6.23	2.0	12.5
HYR-07-01	399.0	400.0	1.84	1.0	1.8
HYR-07-01	409.0	410.0	5.31	1.0	5.3
HYR-07-01	414.0	415.5	6.58	1.5	9.9
HYR-07-01	491.0	492.5	5.69	1.5	8.5
HYR-07-01	502.0	504.0	4.94	2.0	9.9
HYR-07-01	512.0	513.0	3.44	1.0	3.4
HYR-07-01	525.5	526.0	14.80	0.5	7.4
HYR-07-02	176.7	177.1	1.46	0.4	0.6
HYR-07-02	224.6	225.6	16.42	1.0	16.4
HYR-07-02	234.0	236.8	3.21	2.8	9.0
HYR-07-02	277.0	278.0	1.86	1.0	1.9
HYR-07-02	291.4	292.9	40.56	1.5	60.8
HYR-07-03	247.5	247.9	1.02	0.4	0.4
HYR-07-03	258.5	260.0	19.57	1.5	29.4
HYR-07-03	266.0	269.0	30.68	3.0	92.0
HYR-07-03	298.5	301.5	6.75	3.0	20.3
HYR-07-03	322.0	323.0	2.16	1.0	2.2
HYR-07-03	349.5	351.0	1.80	1.5	2.7
HYR-07-03	405.8	406.3	1.96	0.5	1.0
HYR-07-03	412.4	412.9	3.28	0.5	1.6

HOLE-ID	FROM (m)	TO (m)	Au - gpt	m	GxW
HYR-07-04	98.3	99.5	2.22	1.2	2.7
HYR-07-04	191.4	191.8	2.52	0.4	1.0
HYR-07-04	199.4	199.9	8.66	0.5	4.3
HYR-07-04	246.8	248.1	4.35	1.3	5.7
HYR-07-04	318.3	318.6	2.29	0.3	0.7
HYR-07-05	446.0	448.8	8.09	2.8	22.6
HYR-07-05	539.8	540.3	4.03	0.5	2.0
HYR-07-06	420.9	421.4	3.46	0.5	1.7
HYR-07-07	313.7	314.0	2.08	0.3	0.6
HYR-07-07	366.0	367.0	13.20	1.0	13.2
HYR-07-07	455.0	456.0	1.02	1.0	1.0
HYR-07-07	551.0	551.6	7.30	0.6	4.4
HYR-07-08	167.5	168.5	1.01	1.0	1.0
HYR-07-08	374.0	375.0	1.12	1.0	1.1
HYR-07-08	419.5	420.5	2.48	1.0	2.5
HYR-07-08	642.0	643.0	1.82	1.0	1.8
HYR-07-08	648.0	650.0	1.58	2.0	3.2
HYR-07-08	657.0	660.0	1.71	3.0	5.1
HYR-08-09	24.0	25.0	8.17	1.0	8.2
HYR-08-10	231.5	233.0	1.08	1.5	1.6
HYR-08-11	45.5	47.0	3.42	1.5	5.1
HYR-08-11	77.0	78.5	1.53	1.5	2.3
HYR-08-11	104.0	105.0	3.42	1.0	3.2
HYR-08-11	452.5	453.5	1.37	1.0	1.4
HYR-08-11	593.7	594.7	9.88	1.0	9.9
HYR-08-11	694.3	695.3	2.07	1.0	2.1
HYR-08-12	93.5	95.6	1.64	2.1	3.5
HYR-08-12	156.0	157.0	2.10	1.0	2.1
HYR-08-12	223.2	226.2	39.18	3.0	116.8
HYR-08-13	41.0	42.0	1.83	1.0	1.8
HYR-08-13	79.0	80.0	1.02	1.0	1.0
HYR-08-13	128.0	130.0	3.14	2.0	6.3
HYR-08-13	271.2	273.1	6.37	1.9	12.1
HYR-08-13	279.1	280.2	1.54	1.0	1.6
HYR-08-14	293.0	294.0	3.93	1.0	3.9
HYR-08-14	304.6	306.1	1.30	1.6	2.0
HYR-08-16	60.0	61.0	1.03	1.0	1.0
HYR-08-20	372.0	373.0	1.34	1.0	1.3
HYR-08-20	547.0	549.0	7.33	2.0	14.7
HYR-08-20	690.0	691.0	3.01	1.0	3.0
HYR-08-22	291.7	292.7	2.26	1.0	2.3
HYR-08-22	361.0	362.0	1.11	1.0	1.1
HYR-08-22	399.0	400.7	2.34	1.6	3.9
HYR-08-23	78.2	78.7	1.11	0.5	0.6
HYR-08-23	83.0	84.0	2.17	1.0	2.2

HOLE-ID	FROM (m)	TO (m)	Au - gpt	m	GxW
HYR-08-23	138.4	139.4	1.16	1.0	1.2
HYR-08-23	156.3	157.5	1.62	1.3	2.0
HYR-10-24	10.5	12.0	7.80	1.5	11.7
HYR-10-24	67.0	68.0	9.31	1.0	9.3
HYR-10-24	74.0	75.0	1.15	1.0	1.2
HYR-10-24	108.0	110.5	3.33	2.5	8.3
HYR-10-24	124.0	126.0	3.42	2.0	6.8
HYR-10-24	147.0	149.0	1.30	2.0	2.6
HYR-10-24	162.5	163.0	1.61	0.5	0.8
HYR-10-24	168.0	169.0	1.59	1.0	1.6
HYR-10-24	201.0	202.0	2.04	1.0	2.0
HYR-10-25	2.6	4.0	3.52	1.4	4.9
HYR-10-25	27.0	29.0	8.65	2.0	17.3
HYR-10-25	123.9	125.0	1.12	1.2	1.3
HYR-10-25	160.6	163.0	11.26	2.4	27.0
HYR-10-25	166.0	167.0	1.85	1.0	1.9
HYR-10-25	175.0	176.0	1.78	1.0	1.8
HYR-10-25	216.0	217.0	1.13	1.0	1.1
HYR-10-25	245.0	246.0	1.05	1.0	1.1
HYR-10-25	298.0	302.0	7.48	4.0	29.9
HYR-10-25	417.0	417.0	2.18	0.0	0.0
HYR-10-25	481.0	482.0	1.82	1.0	1.8
HYR-10-26	28.3	28.8	9.30	0.5	4.7
HYR-10-26	45.0	46.0	11.83	1.0	11.8
HYR-10-26	51.0	52.0	1.64	1.0	1.6
HYR-10-26	64.0	64.5	1.21	0.5	0.6
HYR-10-26	87.0	88.0	3.93	1.0	3.9
HYR-10-26	184.0	185.5	6.44	1.5	9.7
HYR-10-26	264.0	264.5	2.68	0.5	1.3
HYR-10-26	285.0	286.0	3.92	1.0	3.9
HYR-10-27	118.0	119.3	67.70	1.3	84.6
HYR-10-27	212.0	214.0	4.31	2.0	8.6
HYR-10-27	338.0	339.0	2.19	1.0	2.2
HYR-10-28	46.5	48.0	9.51	1.5	14.3
HYR-10-28	75.0	80.0	1.19	5.0	5.9
HYR-10-28	243.0	244.0	2.01	1.0	2.0
HYR-10-29	8.0	9.0	1.84	1.0	1.8
HYR-10-29	24.0	25.0	1.71	1.0	1.7
HYR-10-29	31.0	33.0	1.77	2.0	3.5
HYR-10-29	56.0	57.0	2.85	1.0	1.5
HYR-10-29	81.3	83.0	4.25	1.8	7.4
HYR-10-29	90.0	91.0	1.54	1.0	1.5
HYR-10-29	101.0	102.0	4.93	1.0	4.9
HYR-10-29	109.0	110.0	1.43	1.0	1.4
HYR-10-29	132.0	134.0	6.56	2.0	13.1

HOLE-ID	FROM (m)	TO (m)	Au - gpt	m	GxW
HYR-10-29	145.0	146.5	1.49	1.5	2.2
HYR-10-30	56.0	58.0	2.43	2.0	4.9
HYR-10-30	63.0	64.0	1.14	1.0	1.1
HYR-10-30	90.0	91.0	1.07	1.0	1.1
HYR-10-30	100.0	101.0	2.22	1.0	2.2
HYR-10-31	9.0	10.0	1.17	1.0	1.2
HYR-10-31	18.0	19.0	3.76	1.0	3.8
HYR-10-31	49.0	55.0	1.63	6.0	9.8
HYR-10-31	62.0	63.0	1.01	1.0	1.0
HYR-10-31	70.0	72.0	1.47	2.0	1.7
HYR-10-31	77.0	78.0	1.53	1.0	1.5
HYR-10-31	84.0	85.0	2.18	1.0	2.2
HYR-10-31	145.0	146.0	1.07	1.0	1.1
HYR-10-31	187.5	188.4	2.59	0.9	2.3
HYR-10-32	74.0	76.0	2.09	2.0	4.2
HYR-10-32	90.0	92.0	9.90	2.0	19.8
HYRC-08-19	116.0	119.0	1.04	3.0	3.1
HYRC-08-19	144.0	145.0	3.28	1.0	3.3
HYRC-08-19	148.0	149.0	2.40	1.0	2.4

									Re	sults		
Hole#	Section	East	North	ele	Length (m)	Az	Dip	from (m)	to (m)	Length (m)	Au-gpt	GxW
RLG-13-01		422,087	5,658,112	358	426.0	180	-45	31.0	33.0	2.0	1.09	2
								197.0	198.0	1.0	3.24	3
								214.0	216.0	2.0	1.36	3
								256.0	258.0	2.0	3.14	6
								265.0	267.0	2.0	1.42	3
RLG-13-02		422,087	5,658,112	358	600.0	180	-60	305.0	310.0	5.0	38.65	193
									incl	2.0	95.85	192
								418.0	419.0	1.0	3.44	3
								452.0	453.0	1.0	3.94	4
								486.0	490.0	4.0	19.63	79
									incl	1.0	75.30	75
								561.0	563.0	2.0	1.75	3
RLG-13-03		422,174	5,658,124	364	426.0	180	-45	76.0	77.0	1.0	3.39	3
								97.0	98.0	1.0	12.70	13
								185.0	202.0	17.0	6.83	116
									incl	1.0	92.60	93
								335.0	336.0	1.0	1.38	1
								377.0	378.0	1.0	1.39	1
								425.0	426.0	1.0	1.52	2
RLG-13-04		422,174	5,658,124	364	600.0	180	-60	128.0	129.0	1.0	2.58	3
								356.0	358.0	2.0	5.69	11
								417.0	418.0	1.0	3.01	3
								469.0	470.0	1.0	5.49	5
								484.0	485.0	1.0	1.47	1
								545.0	546.0	1.0	3.91	4
								560.0	562.0	2.0	1.60	3
RLG-13-05		422,365	5,658,142	372	249.0	180	-45	128.0	129.0	1.0	1.09	1
								164.0	164.8	0.8	1.16	1
								247.0	249.0		1.37	0
RLG-13-06		422,365	5,658,142	372	381.0	180	-60	212.9	214.0	1.1	3.91	4
								233.0	234.0	1.0	9.32	9
RLG-13-07		422,388	5,658,077	368	288.0	180	-45	17.0	19.0	2.0	4.87	10
RLG-13-08		422,388	5,658,077	368	313.0	180	-60	16.0	17.0	1.0	1.01	1
								19.0	20.0	1.0	1.04	1
								23.0	26.0	3.0	2.63	8
								47.0	48.0	1.0	1.37	1
								291.0	292.0	1.0	2.05	2
8.0					3,283.0	m						
RLG-14-09		422 189	5.657 984		66 0	360	-45	29.6	31.1	15	1,54	2
RLG-14-10		422,189	5,657,983		138.0	360	-82	42.7	44.2	1.5	2.15	3

									Re	Results Au-gpt (m) Au-gpt (m) 78.7 1.8 0.65 51.6 1.5 6.16 114.0 2.0 1.28 165.5 1.1 28.00 192.8 4.0 26.97 incl 1.0 77.70 127.0 2.0 0.75 58.0 2.0 4.91 35.5 1.5 0.69 86.0 1.5 162.00 137.4 1.0 9.19 112.0 1.0 1.24 223.0 1.7 0.77 126.0 1.5 1.19 164.0 1.0 1.44 165.5 0.5 2.56 23.0 2.8 1.30 238.2 1.2 3.38 247.9 2.5 1.51 98.5 1.5 69.55		
Hole#	Section	East	North	ele	Length (m)	Az	Dip	from (m)	to (m)	Length (m)	Au-gpt	Gx₩
RLG-14-11		422.156	5.657.964		90.0	360	-45	76.9	78.7	1.8	0.65	1
RLG-14-12		422,156	5.657.961		102.0	360	-67	50.1	51.6	1.5	6.16	9
RLG-14-13		422,220	5,657,955		141.0	360	-55	112.0	114.0	2.0	1.28	3
RLG-14-14		422,160	5,657,855		216.0	360	-45	164.4	165.5	1.1	28.00	31
								188.8	192.8	4.0	26.97	108
									incl	1.0	77.70	
RLG-14-15		422,200	5,657,855		240.0	360	-48	125.0	127.0	2.0	0.75	2
RLG-14-16		421,960	5,658,045		135.0	180	-45	56.0	58.0	2.0	4.91	10
RLG-14-17		421,860	5,657,940		135.0	360	-45	34.0	35.5	1.5	0.69	1
RLG-14-18		422,080	5,658,015		153.0	180	-45	84.5	86.0	1.5	162.00	243
								136.4	137.4	1.0	9.19	9
10		Holes			1,416.0			m				
RLG-15-19		422,304	5,657,948	372	300.0	360	-45	111.0	112.0	1.0	1.24	1
RLG-15-20		422,304	5,657,948	372	261.0	360	-60	221.3	223.0	1.7	0.77	1
RLG-15-21		422,346	5,657,951	372	180.0	360	-45	124.5	126.0	1.5	1.19	2
RLG-15-22		422,451	5,657,915	372	327.0	360	-45	163.0	164.0	1.0	0.61	1
RLG-15-23		422,550	5,657,862	372	375.0	360	-45	246.0	247.0	1.0	1.44	1
RLG-15-24		422,699	5,657,821	372	324.0	360	-45	165.0	165.5	0.5	2.56	1
								230.2	233.0	2.8	1.30	4
								237.0	238.2	1.2	3.38	4
								245.4	247.9	2.5	1.51	4
								297.0	298.5	1.5	69.55	104
6		holes	total		1,767.0			m				
RLG-16-24ext		422,694	5,657,816	379	73.0	360	-45	nsv				
RLG-16-25		422,650	5,657,929	370	210.0	360	-45	53.6	54.5	0.9	1.45	1
								90.0	91.0	1.0	1.44	1
RLG-16-26		422,700	5,657,980	377	120.0	360	-45	6.0	7.5	1.5	1.13	2
RLG-16-27		422,751	5,657,871	381	267.0	360	-45	nsv				
RLG-16-28		422,799	5,657,821	380	321.0	360	-45	51.5	52.5	1.0	2.22	2
								112.5	114.0	1.5	1.09	2
RLG-16-29		422,851	5,657,878	389	240.0	360	-45	nsv				
RLG-16-30		423,000	5,657,892	389	189.0	360	-45	48.0	49.5	1.5	3.30	5
								61.5	63.0	1.5	1.57	2
								81.0	82.5	1.5	2.02	3
								148.5	154.5	3.0	1.20	4
RLG-16-31		422,786	5,658,051	385	945.0	92	-52	252.0	253.5	1.5	50.41	76
								348.0	349.0	1.0	2.22	2
								378.0	379.5	1.5	3.50	5
								535.0	536.5	1.5	22.72	34
								594.0	595.5	1.5	3.89	6
								597.0	598.5	1.5	5.10	8
								639.0	640.5	1.5	2.83	4
8					2,365.0			m				
RI G-16-32		423 226	5 657 774	358	498 N	310	_//5	152 3	153.3	10	1 17	1
NEG 10-02		720,220	0,007,774	000	+00.0		**	166.8	168.0	12	1 15	1
								270.9	271 7	0.8	1.03	
		1						1				· ·

										Re	sults		
Hole#	Section	East	North	ele	Length (m)	Az	Dip		from (m)	to (m)	Length (m)	Au-gpt	Gx₩
									325.5	326.0	0.5	3.47	2
									404.7	405.6	0.9	1.78	2
									455.0	456.0	1.0	1.32	1
RLG-16-33		422,906	5,657,826	378	246.0	60	-45		51.4	52.4	1.0	26.85	27
								incl	51.4	51.9	0.5	51.32	26
Resource													
RLG-16-34		421,882	5,657,652	378	465.0	355	-48		262.5	263.0	0.5	1.20	1
									303.5	307.0	3.5	8.74	31
								incl	303.5	304.5	1.0	23.01	23
									309.0	310.5	1.5	1.42	2
									341.0	344.2	3.2	1.13	4
RLG-16-35		421,917	5,657,747	375	351.0	357	-50		173.5	174.0	0.5	2.43	1
									240.7	241.9	1.2	8.97	11
								incl	241.4	241.9	0.5	19.85	10
RLG-16-36		421,754	5,657,653	380	474.0	357	-58		222.0	223.5	1.5	1.20	2
									261.0	262.0	1.0	2.58	3
									303.0	304.5	1.5	3.19	5
									336.2	348.5	12.3	1.88	23
								incl	336.2	340.0	3.8	3.56	14
								incl	336.2	336.7	0.5	24.23	12
								and	345.0	348.5	3.5	2.33	8
									361.0	361.5	0.5	4.22	2
									364.0	365.0	1.0	3.16	3
									389.0	390.0	1.0	2.55	3
									407.1	408.0	0.9	1.44	1
									414.8	416.7	1.9	1.92	4
									463.0	463.5	0.5	2.81	1
RLG-16-37		421,545	5,657,684	390	276.0	357	-45		nsv				
RLG-16-38		421,480	5,657,723	393	351.0	355	-48		40.8	41.9	1.1	11.66	13
								incl	41.4	41.9	0.5	24.95	12
									249.0	249.5	0.5	6.47	3
RLG-16-39		421,561	5,657,765	401	150.0	360	-48		48.3	50.1	1.8	1.06	2
									80.0	81.0	1.0	1.19	1
8		holes			2,811.0			m					
PLC 17 40		421 200	5 657 000	100	180.0	170	15					Nev	
DIG 47 44		421,200	5,007,900	400	109.0	1/0	-40		1 1 1 5	142.0	1 5	1000	
RLG-17-41		421,201	0,007,903	409	204.0	1/0	-00	1000	141.0	143.0	1.0	1.37	2
DI G 47 42		421 200	5 657 005	400	216.0	170	ΛE	IVZB	70.0	147.0 74.0	1.0	0.70	3
DIG 17 42		421,299	5,007,090	40Z 300	210.0	170	-40 //5	1000	70.0 85.4	71.0	1.0	0.13	
RLG-17-43		421,449	5,007,900	390	204.0	1/0	-40	IVZB	00.4	00.4	1.0	2.4Z	4
KLG-17-44		421,705	5,057,954	395	393.0	170	-00		109.0	170.0	1.0	1.15	L 1

										Re	Results Au-gpt (m) Au-gpt (m) Au-gpt (m) Au-gpt (m) Au-gpt (m) Au-gpt (m) Au-gpt (m) Au-gpt (m) Au Au-gpt (m) Au Au-gpt (m) Au		
Hole#	Section	East	North	ele	Length (m)	Az	Dip		from (m)	to (m)	Length (m)	Au-gpt	Gx₩
								103C	232.0	238.0	6.0	1.83	11
					incl				235.0	236.5	1.5	3.64	5
									258.0	260.0	2.0	1.59	3
								104D	270.0	271.0	1.0	21.88	22
RLG-17-45		421,795	5,658,050	379	357.0	175	-45	100Z	111.0	112.5	1.5	1.77	3
								102B	183.5	185.0	1.5	2.73	4
									247.0	248.8	1.8	1.61	3
									279.0	280.0	1.0	2.10	2
								103C	285.0	288.0	3.0	72.58	218
					incl				285.0	286.5	1.5	142.42	214
RLG-17-46		422,251	5,657,749	364	433.5	353	-55					NSV	
RLG-17-47		422,202	5,657,736	371	405.0	355	-45					NSV	
RLG-17-48		422,100	5,657,701	389	522.0	353	-45		132.5	133.5	1.0	1.96	2
								103C	252.0	253.0	1.0	5.37	5
								102B	262.0	263.5	1.5	1.79	3
								101A	354.5	357.0	2.5	3.01	8
								100Z	387.0	388.0	1.0	16.05	16
9		HOLES			3,013.5			m					
RLG-17-49		423,243	5,656,845	380	654.0	323	-47	Star 2				nsv	
DI 0 17 50		104.000	5 057 540		000.0	0.00	50		105.4	105.0		0.00	
RLG-17-50		421,802	5,657,513		600.0	360	-52		425.1	425.9	0.8	2.39	2
									429.2	429.5	0.3	2.87	
									4/4./	400.Z	11.0	0.73	0
										502.0	0.3	5.19 49.07	7
									512.0	514.0	0.4	0.07	1 2
									521.0	522.0	1.0	2.17	2
									570.0	573.4	1.0	Z.10	1/
									incl	575.4		4.10 11 /0	14
RI G-17-51		421 802	5 657 513		650.0	360	-62		559.8	560.8	1.0	5.61	6
INEG-17-01		421,002	0,007,010		000.0	000	-02		621.0	627.0	6.0	136	8
									incl	027.0	0.5	5.98	3
			ļ						638.0	640.0	2.0	2.52	5
									645.0	646.0	1.0	1,91	2
RLG-17-52		421.600	5,657.620		351.0	360	-50		53.4	54.0	0.6	1.25	1
		,							127.5	128.2	0.7	2.12	2
									172.1	172.4	0.3	8.39	2
									265.8	266.3	0.5	3.10	1
	1				1				286.2	286.5	0.3	3.25	1
	1								293.2	293.7	0.5	1.06	1
									309.4	309.7	0.3	10.41	3
RLG-17-53		424,145	5,657,778		351.0	360	-60		277.7	278.7	1.0	3.63	
RLG-17-54		423,773	5,658,149		450.0	165	-45		377.8	378.4	0.6	0.91	
6		holes			3,056.0								
RLG-18-55		422,060	5,657,400	373	1,272.0	352	-74		1,163.5	1,165.0	1.5	4.39	

								Results				
Hole#	Section	East	North	ele	Length (m)	Az	Dip	from (m)	to (m)	Length (m)	Au-gpt	Gx₩
		404.070	5 050 050	074	450.0	205	15	02.0	04.0	2.0	4.70	
RLG-18-56		421,270	5,656,858	371	150.0	325	-45	82.0	84.0	2.0	1.70	3
								87.0	88.0	1.0	1.80	2
								100.Z	102.0	1.0	13.01	25
DI C 19 57		424 270	E 6E6 0E0	274	177.0	205	60	06.0	102.5	7.5	1 2 2	10
REG-10-57		421,270	3,030,030	571	177.0	525	-00	90.0	incl	1.5	3 10	5
								106.5	108.0	1.5	114	2
								150.5	152.0	1.5	2.67	4
								100.0	102.0	1.0	2.07	-
RI G-18-58		421 211	5 656 859	375	201.0	275	-45	67.5	69.2	17	1 4 4	2
1120 10 00		121,211	0,000,000	010	201.0	210	10	01.0	00.2			-
RLG-18-59		421,211	5.656.859	375	186.0	275	-55	70.0	76.7	6.7	1.31	9
		,	-,,						incl	1.2	2.83	3
								85.8	87.3	1.5	2.16	3
RLG-18-60		421,366	5,656,868	374	171.0	325	-45	30.5	32.0	1.5	1.02	2
		,						62.7	68.3	5.6	3.76	21
									incl	1.4	8.88	12
								73.2	74.8	1.6	1.50	2
								86.9	88.2	1.3	1.62	2
RLG-18-61		421,366	5,656,868	374	159.0	325	-55	28.7	29.9	1.2	2.16	3
								32.5	33.9	1.4	1.93	3
								59.5	68.8	9.3	6.51	61
									incl	1.2	9.52	11
								73.1	74.5	1.4	1.04	1
								85.2	93.0	7.8	14.18	111
									incl	3.0	35.26	106
									incl	1.4	60.69	85
RLG-18-62		421,437	5,656,936	380	219.0	320	-45	13.1	14.1	1.0	9.85	10
								107.4	108.4	1.0	8.70	9
								136.0	137.7	1./	1.14	2
		104 150	E 050 007	270	400.0	200		22.7	20.0	10	4.07	<u> </u>
KLG-18-63		421,456	5,000,907	3/8	180.0	320	-60	JJ./	38.U	4.3	1.87	р С
								E0.7	INCI ED O	1.0	5.0J	7
								0.1	52.0 100.1	1.5	5.14 1.14	1
								 90.0	100.1	1.0	1.11	<u> </u>
1	holos	RIV1			1 272 0							
8	holes	NT			2,715.0							
RLG-19-56A	42350E	421,270	5,656,858	369	252.0	325	-51	182.1	183.5	1.4	0.88	1
								379.0	380.5	1.5	2.32	3
RLG-19-64	421280E	421,280	5,656,816	359	204.0	335	-50	19.0	31.5	12.5	0.95	12

								Results					
Hole#	Section	East	North	ele	Length (m)	Az	Dip	from (m)	to (m)	Length (m)	Au-gpt	GxW	
								166.5	168.0	1.5	1.41	2	
RLG-19-65	42425E	421,336	5,656,841	363	288.0	335	-65	43.5	45.0	1.5	2.01	3	
								69.5	74.7	5.2	4.99	26	
								91.0	92.5	1.5	1.95	3	
								127.5	129.0	1.5	1.76	3	
								136.2	138.0	1.8	2.07	4	
								187.0	189.0	2.0	1.00	2	
								195.9	196.4	0.5	1.75	1	
RLG-19-66	42525E	421,409	5,656,895	368	144.0	335	-45	20.0	44.0	24.0	2.55	61	
								41.0	44.0	3.0	11.13	33	
								55.5	58.5	3.0	1.61	5	
								72.0	75.0	3.0	3.04	9	
RLG-19-67	42525E	421,409	5,656,895	368	252.0	335	-65	40.5	42.0	1.5	1.17	2	
								47.5	48.3	0.8	1.50	1	
								100.5	103.0	2.5	1.22	3	
								106.3	107.0	0.7	1.86	1	
								120.4	125.5	5.1	0.84	4	
								153.0	155.0	2.0	1.79	4	
								227.0	230.0	3.0	6.34	19	
RLG-19-68	42475E	421,337	5,656,972	369	222.0	155	-45	53.0	55.0	2.0	1.20	2	
								82.5	96.0	13.5	12.14	164	
								82.5	91.5	9.0	17.57	158	
								82.5	84.0	1.5	97.98	147	
								169.5	171.0	1.5	2.00	3	
RLG-19-69	42475E	421,337	5,656,972	369	252.0	155	-60	132.0	153.0	21.0	5.38	113	
								134.7	147.0	12.3	6.21	76	
								134.7	137.8	3.1	10.30	32	
								145.5	150.0	4.5	8.40	38	
RLG-19-70	42450E	421,280	5,657,028	369	273.0	155	-45	124.0	125.5	1.5	1.19	2	
								161.0	162.5	1.5	2.81	4	
								176.0	182.0	6.0	3.11	19	
								176.0	177.5	1.5	5.33	8	
								193.3	201.0	7.7	1.90	15	
								199.5	201.0	1.5	6.46	10	
								258.3	263.1	4.8	1.38	7	
RLG-19-71	42550E	421,394	5,657,051	376	243.0	155	-45	99.5	101.0	1.5	2.34	4	
								105.0	106.5	1.5	1.07	2	
								141.7	144.4	2.7	0.95	3	
								193.0	196.0	3.0	0.96	3	
RLG-19-72	42575E	421,397	5,657,106	387	327.0	155	-50	226.2	241.0	14.8	5.23	77	
								232.0	239.5	7.5	9.14	69	
								232.0	236.3	4.3	12.93	56	
								300.0	304.5	4.5	1.05	5	
RLG-19-73	42550E	421,373	5,657,102	385	351.0	155	-48	148.0	149.5	1.5	1.59	2	
				1				273.0	274.5	1.5	1.09	2	
RLG-19-74		421,406	5,657,081	378	252.0	155	-45	240.7	246.0	5.3	1.08	6	
12		holes			3,060.0								

									Results				
Hole#	Section	East	North	ele	Length (m)	Az	Dip		from (m)	to (m)	Length (m)	Au-gpt	GxW
RLG-20-75	42650	421,457	5,657,159	372	363.0	157	-45		125.0	128.0	3.0	1.606	5
RLG-20-76	42500	421,301	5,657,145	370	406.5	157	-45		183.5	185.0	1.5	1.630	2
									309.6	312.2	2.6	1.544	4
									333.0	337.5	4.5	2.757	12
									356.5	358.0	1.5	4.670	7
RLG-20-77	42450	421,274	5,657,079	367	339.0	157	-45		61.0	83.5	22.5	0.754	17
									175.5	177.0	1.5	1.230	2
									226.0	230.5	4.5	3.963	18
										incl	1.5	7.310	11
									278.0	279.5	1.5	1.970	3
									307.5	308.5	1.0	1.420	1
RLG-20-78	42325	421,164	5,657,003	376	276.0	157	-45		106.5	108.0	1.5	7.340	11
									121.5	123.0	1.5	1.330	2
RLG-20-79	42625	421,459	5,657,073	373	243.0	157	-45		201.0	203.5	2.5	1.554	4
RLG-20-80	42725	421,526	5,657,181	377	324.0	157	-47		205.5	207.0	1.5	1.882	3
		,	, ,						262.5	264.0	1.5	1.945	3
									273.0	274.5	1.5	1.835	3
									312.0	315.0	3.0	7.924	24
										incl	15	14 7 12	22
RI G-20-81	42775	421 564	5 657 230	373	375.0	157	-45		43.5	45.0	15	1 432	2
1120 20 01	12110	121,001	0,001,200	010	010.0	101	10		80.0	81.5	1.5	4 919	7
									145.5	147.0	1.5	1.616	2
									110.0	111.0	1.0		-
RI G-20-82	12575	121 370	5 657 150	383	465.0	157	-55		231.0	232.6	16	1 308	2
TREG-20-02	42070	421,575	0,007,100	000	400.0	107	-00		323.0	324.5	1.0	1.000	2
									525.0	524.5	1.0	1.001	
RI G 20 83	12175	421 367	5 656 803	376	108.0	338	72		12.5	17.0	45	0.735	3
1120-20-03	42475	421,507	3,030,035	370	130.0	330	-72		12.5 55.5	57.0	4.5	2 630	1
									60.0	615	1.5	1.630	2
									88.0	80.5	1.5	1.000	7
									107.0	110.0	1.0	4.010	
									107.0	110.0	3.0	1.299	4
DI C 20 94	10175	101 217	5 656 044	275	109.0	150	70		9 5	10.0	15	2 450	4
KLG-20-84	424/5	421,347	ə,oəo,944	3/5	198.0	108	-/2		0.0	10.0	1.5	2.450	4
									106.5	120.0	13.5	3.409	40
								INCI	106.5	112.5	0.0	5.915	35
									400.5		1.5	11.900	18
									133.5	142.5	9.0	1.684	15
									105.0	100.5	1.5	2.020	3
									175.5	181.5	0.0	1.91/	12
		ļ								Incl	1.5	4.670	

									Re	sults		
Hole#	Section	East	North	ele	Length (m)	Az	Dip	from (m)	to (m)	Length (m)	Au-gpt	Gx₩
10	holes				3,187.5	m						
RLG-20-85	42850	421,665	5,657,175	376	246.0	157	-45	220.5	222.0	1.5	1.03	2
								231.0	232.5	1.5	1.48	2
RLG-20-86	42850	421,665	5,657,175	376	663.0	152	-72	144.5	146.0	1.5	2.43	4
								150.5	152.0	1.5	2.03	3
								153.0	154.5	1.5	1.27	2
								158.5	159.5	1.0	1.95	2
								187.5	189.0	1.5	1.11	2
								387.5	389.0	1.5	1.02	2
RLG-20-87	42450	421,319	5,656,939	373	117.0	157	-45	30.5	35.7	5.2	1.66	9
									incl	1.5	4.16	6
								44.5	46.0	1.5	1.47	2
								84.0	90.7	6./	1.32	9
								101.0	Incl	1.2	3./4	4
								101.0	104.0	3.0	1.25	4
	10150	104.040	F 050 000	070	070.0	457	75	40.5	10.0		0.17	
RLG-20-88	42450	421,319	5,656,939	3/3	276.0	157	-75	48.5	49.9	1.4	2.47	3
								57.7	68.0	10.3	2.87	30
									inci	7.5	3.49	20
								75.0		1.5	1.21	11
								75.0	70.5	1.0	1.03	40
								02.3	90.0	1.5	1.04	6
								113.0	123.4	1.3	4.55	17
								113.0	ipel	10.4	6.38	10
								157.0	167.0	10.0	0.30	18
								107.0	incl	10.0	4.63	7
								192.5	194.0	1.5	1.00	2
								217.0	218.5	1.5	2.53	4
								230.5	232.0	1.5	1.67	3
								283.0	284.5	1.5	1.99	3
												<u> </u>
RLG-20-89	42400	421.277	5,656.913	369	162.0	157	-45	52.5	54.0	1.5	1.63	2
		,	,					104.8	106.0	1.2	1.50	2
								107.5	109.0	1.5	1.55	2
								110.5	130.0	19.5	1.42	28
									incl	1.5	6.45	10
	1							140.5	142.0	1.5	10.16	15
	1						1					
RLG-20-90	42400	421,277	5,656,913	369	285.0	157	-75	259.0	260.5	1.5	1.33	2
							1					
RLG-20-91	42950	421,762	5,657,178	379	192.5	157	-45	nsv				
RLG-20-92	43200	421,977	5,657,326	374	429.0	155	-45	121.7	122.3	0.6	3.56	2
								149.0	152.3	3.3	1.46	5
WEST RED LAKE GOLD Mines Inc. Diamond Drill Summary

									Results				
Hole#	Section	East	North	ele	Length (m)	Az	Dip		from (m)	to (m)	Length (m)	Au-gpt	GxW
									349.8	351.2	1.4	1.36	2
RLG-20-93	43300	422,152	5,657,106	381	324.0	337	-45		61.6	66.8	5.2	2.91	15
										incl	1.3	5.60	7
									88.8	89.9	1.1	3.00	3
RLG-20-94		421,513	5,656,929	369	501.0	260	-45		76.2	84.0	7.8	1.25	10
									93.0	99.0	6.0	1.76	11
									120.0	121.5	1.5	1.32	2
									155.5	163.0	7.5	0.73	5
									192.5	194.0	1.5	10.36	16
									213.5	226.3	12.8	2.94	38
									257.0	263.4	6.4	2.52	16
										incl	1.5	10.34	16
									394.7	396.5	1.8	2.06	4
									418.5	420.0	1.5	1.86	3
10	holes				3,195.5	m							
PLC 21 005		422,400	5 657 200	265	636.0	205	45		26.0	27.5	15	0.48	1
NLG-21-095		422,409	3,037,322	303	030.0	525	-40		30.0	37.J 270.5	1.5	0.40	1
PLC 21 006		421.600	5 657 701	300	246.0	250	15		16.5	10.0	1.5	0.00	6
REG-21-090		421,000	3,037,791	399	240.0	330	-40		28.0	20.5	2.J 1.5	2.2J	2
									20.0	29.0	1.5	1.13	2
									137.5	130.0	1.5	1.55	2
RI G-21-097		121 578	5 657 786	300	78.0	0	-45		18.0	18.0	1.0	7.48	7
1120 21 007		421,070	0,007,700	000	70.0	Ň			18.9	20.4	15		,
									53.5	56.5	3.0	139	4
RI G-21-098		421 578	5 657 785	399	195.0	n	-75		46.9	48.8	19	77.87	148
1120211000		121,010	0,001,100		100.0	Ů	10	incl	46.9	47.5	0.6	160.20	96
									75.5	78.0	2.5	UGO	
									85.5	90.0	4.5	0.80	4
									96.0	102.0	6.0	0.75	5
RLG-21-099		421,600	5,657,785	396	55.0	358	-55		28.0	30.0		UGO	
		,							52.0	52.9	0.9	1.01	1
RLG-21-100		421,537	5,657,786	398	72.0	360	-45		4.8	6.5	1.7	2.72	5
									12.0	14.0	2.0	2.74	5
RLG-21-101		421,536	5,657,785	399	75.0	360	-75		36.0	39.0	3.0	1.58	5
									50.5	62.5	12.0	0.73	9
RLG-21-102		421,518	5,657,772	395	87.0	360	-45		31.0	32.9	1.9	1.32	3
									57.5	59.0	1.5	1.63	2
RLG-21-103		421,520	5,657,771	400	81.0	360	-65		46.5	49.5	3.0	0.92	3
RLG-21-104		421,500	5,657,766	392	111.0	360	-45		19.5	21.0	1.5	3.70	6
									44.5	46.0	1.5	3.36	5
RLG-21-105		421,500	5,657,766	393	105.0	360	-70		25.5	27.0	1.5	1.71	3
RLG-21-106		421,628	5,657,868	399	111.0	188	-50		21.0	22.5	1.5	0.75	1
RLG-21-107		421,607	5,657,826	401	93.0	198	-45		4.2	8.5	4.3	1.28	5
RLG-21-108		421,609	5,657,822	403	75.0	140	-45		23.0	24.5	1.5	1.80	3

Hole#	Section	East	North	ele	Length (m)	Az	Dip	from (m)	to (m)	Length (m)	Au-gpt	Gx₩
RLG-21-109		421,560	5,657,651	378	486.0	355	-53	40.0	41.5	1.5	4.84	7
								367.0	368.0	1.0	3.47	3
								386.0	387.5	1.5	2.94	4
								484.0	486.0	2.0	2.10	4
RLG-21-110		421,683	5,657,791	369	230.1	345	-45	29.0	33.5	4.5	1.26	6
								59.0	60.5	1.5	2.58	4
RLG-21-111		421,680	5,657,797	369	168.0	345	-60	38.5	46.0	7.5	1.52	11
								77.5	79.0	1.5	3.77	6
								143.5	145.0	1.5	1.48	2
								166.0	168.0	2.0	3.39	7
RLG-21-112		421,710	5,657,804	368	75.0	359	-45	24.5	27.5	3.0	2.86	9
								44.0	48.5	4.5	0.71	3
RLG-21-113		421,701	5,657,670	369	402.0	356	-48	110.0	116.0	6.0	1.00	6
								197.0	198.5	1.5	1.40	2
								220.3	224.5	4.2	2.98	12
								359.5	361.0	1.5	1.78	3
RLG-21-114		421,959	5,657,779	366	288.0	357	-57	212.5	217.0	4.5	3.96	18
								259.5	261.0	1.5	1.55	2
								274.5	276.0	1.5	1.76	3
20	DDH					3669						

WEST RED LAKE GOLD Mines Inc. Diamond Drill Summary

Figure 11- Surface Plan–Diamond Drilling-showing all collar locations drilled by the RLG (Source: Kenneth Guy, P.Geo,. QP, Gemcom Database)